Category: Neuroscience
Related organisations
Inclusive networking and education for neuroscience.
European network for immersive audio.
Organisation for neuroscientists interested in spiking neural networks.
Related software
Spike sorting.
Python package for psychophysical tests of automatic speech recognition systems.
Python/Matlab package for comparing binaural auditory models.
A Python simulator for spiking neural networks.
Related videos
-
Cosyne tutorial on spiking neural networks (1/2)Talk / 2022
Part 1 - "Classical" SNNs -
Understanding the role of neural heterogeneity in learningTalk / 2021
Talk on neural heterogeneity by Nicolas Perez. -
Neural heterogeneity promotes robust learningTalk / 2021
Talk on neural heterogeneity by Dan Goodman. -
Binaural sound localisation game demoDemo / 2016
Demo of binaural sound localisation virtual reality game.
Related publications
Preprints
2021
-
Perez-Nieves N, Goodman DFM (2021)
Sparse spiking gradient descent.
Advances in Neural Information Processing Systems -
Perez-Nieves N, Leung VCH, Dragotti PL, Goodman DFM (2021)
Neural heterogeneity promotes robust learning.
Nature Communications -
Su Y, Chung Y, Goodman DFM, Hancock KE, Delgutte B (2021)
Rate and Temporal Coding of Regular and Irregular Pulse Trains in Auditory Midbrain of Normal‑Hearing and Cochlear‑Implanted Rabbits.
Journal of the Association for Research in Otolaryngology -
Achakulvisut T, et al. (2021)
Towards democratizing and automating online conferences: lessons from the Neuromatch conferences.
Trends in Cognitive Sciences -
Zenke F, et al. (2021)
Visualizing a joint future of neuroscience and neuromorphic engineering.
Neuron
2020
-
Stimberg M, Goodman DFM, Nowotny T (2020)
Brian2GeNN: a system for accelerating a large variety of spiking neural networks with graphics hardware.
Scientific Reports -
Achakulvisut T, Ruangrong T, Acuna DE, Wyble B, Goodman D, Kording K (2020)
neuromatch: Algorithms to match scientists.
eLife Labs -
Achakulvisut T, et al. (2020)
Point of View: Improving on legacy conferences by moving online.
eLife -
Hathway P (2020)
Biologically-inspired machine learning approaches to large-scale neural data analysis.
PhD thesis, Imperial College London
2019
-
Stimberg M, Goodman DFM, Brette R, De Pittà M (2019)
Modeling neuron-glia interactions with the Brian 2 simulator.
Springer -
Chu Y, Goodman DFM (2019)
An Inference Network Model for Goal-directed Attentional Selection.
Cognitive Computational Neuroscience -
Engel I, Goodman DFM, Picinali L (2019)
The Effect of Auditory Anchors on Sound Localization: A Preliminary Study.
Immersive and Interactive Audio -
Stimberg M, Brette R, Goodman DFM (2019)
Brian 2, an intuitive and efficient neural simulator.
eLife -
Weerts L, Clopath C, Goodman DFM (2019)
A Unifying Framework for Neuro-Inspired, Data-Driven Detection of Low-Level Auditory Features.
Cognitive Computational Neuroscience -
Steadman MA, Kim C, Lestang JH, Goodman DFM, Picinali L (2019)
Short-term effects of sound localization training in virtual reality.
Scientific Reports -
Perez-Nieves N, Leung VCH, Dragotti PL, Goodman DFM (2019)
Advantages of heterogeneity of parameters in spiking neural network training.
Cognitive Computational Neuroscience -
Lestang J-H (2019)
The role of canonical neural computations in sound localization.
PhD thesis, Imperial College London - + 5 conference papers
2018
-
Blundell I, et al. (2018)
Code Generation in Computational Neuroscience: A Review of Tools and Techniques.
Frontiers in Neuroinformatics -
Dietz M, et al. (2018)
A framework for testing and comparing binaural models.
Hearing Research -
Goodman DFM, Winter IM, Léger AC, de Cheveigné A, Lorenzi C (2018)
Modelling firing regularity in the ventral cochlear nucleus: mechanisms, and effects of stimulus level and synaptopathy.
Hearing Research -
Chungeun K, Steadman M, Lestang JH, Goodman DFM, Picinali L (2018)
A VR-Based Mobile Platform for Training to Non-Individualized Binaural 3D Audio.
Audio Engineering Society - + 1 conference paper
2017
-
Goodman DF (2017)
On the use of hypothesis-driven reduced models in auditory neuroscience.
Acoustical Society of America -
Dietz M, et al. (2017)
An initiative for testability and comparability of binaural models.
Acoustical Society of America -
Lestang JH, Goodman DF (2017)
The roles of inhibition and adaptation for spatial hearing in difficult listening conditions.
Acoustical Society of America - + 3 conference papers
2016
-
Dietz M, et al. (2016)
A framework for auditory model comparability and applicability.
Acoustical Society of America -
Rossant C, et al. (2016)
Spike sorting for large, dense electrode arrays.
Nature Neuroscience - + 1 conference paper
2015
-
Goodman DFM, de Cheveigné A, Winter IM, Lorenzi C (2015)
Downstream changes in firing regularity following damage to the early auditory system.
Computational Neuroscience - + 1 conference paper
2014
-
Stimberg M, Goodman DFM, Benichoux V, Brette R (2014)
Equation-oriented specification of neural models for simulations.
Frontiers in Neuroinformatics -
Kadir SN, Goodman DFM, Harris KD (2014)
High-dimensional cluster analysis with the masked EM algorithm.
Neural Computation
2013
-
Goodman DFM, Benichoux V, Brette R (2013)
Decoding neural responses to temporal cues for sound localization.
eLife -
Rossant C, Fontaine B, Goodman DFM (2013)
Playdoh: a lightweight Python package for distributed computing and optimisation.
Journal of Computational Science
2012
-
Brette R, Goodman DFM (2012)
Simulating spiking neural networks on GPU.
Network: Computation in Neural Systems
2011
-
Fontaine B, Goodman DFM, Benichoux V, Brette R (2011)
Brian Hears: online auditory processing using vectorisation over channels.
Frontiers in Neuroinformatics -
Rossant C, Goodman DFM, Fontaine B, Platkiewicz J, Magnusson AK, Brette R (2011)
Fitting neuron models to spike trains.
Frontiers in Neuroscience -
Kremer Y, Léger J-F, Goodman D, Brette R, Bourdieu L (2011)
Late emergence of the vibrissa direction selectivity map in the rat barrel cortex.
Journal of Neuroscience -
Brette R, Goodman DFM (2011)
Vectorised algorithms for spiking neural network simulation.
Neural Computation
2010
-
Goodman DFM, Brette R (2010)
Learning to localise sounds with spiking neural networks.
Advances in Neural Information Processing Systems -
Rossant C, Goodman DFM, Platkiewicz J, Brette R (2010)
Automatic fitting of spiking neuron models to electrophysiological recordings.
Frontiers in Neuroinformatics -
Goodman DFM, Brette R (2010)
Spike-timing-based computation in sound localization.
PLoS Computational Biology
2009
-
Brette R, Goodman D (2009)
Brian: a simple and flexible simulator for spiking neural networks.
The Neuromorphic Engineer