General neural mechanisms can account for rising slope preference in localization of ambiguous sounds

Preprint
 

Abstract

Sound localization in reverberant environments is a difficult task that human listeners perform effortlessly. Many neural mechanisms have been proposed to account for this behavior. Generally they rely on emphasizing localization information at the onset of the incoming sound while discarding localization cues that arrive later. We modelled several of these mechanisms using neural circuits commonly found in the brain and tested their performance in the context of experiments showing that, in the dominant frequency region for sound localisation, we have a preference for auditory cues arriving during the rising slope of the sound energy (Dietz et al., 2013). We found that both single cell mechanisms (onset and adaptation) and population mechanisms (lateral inhibition) were easily able to reproduce the results across a very wide range of parameter settings. This suggests that sound localization in reverberant environments may not require specialised mechanisms specific to perform that task, but could instead rely on common neural circuits in the brain. This would allow for the possibility of individual differences in learnt strategies or neuronal parameters. This research is fully reproducible, and we made our code available to edit and run online via interactive live notebooks.

Links

Related software

Brian

A Python simulator for spiking neural networks.

Categories