Fitting neuron models to spike trains

  • Rossant C
  • Dan Goodman
  • Fontaine B
  • Platkiewicz J
  • Magnusson AK
  • Brette R
Rossant C, Goodman DFM, Fontaine B, Platkiewicz J, Magnusson AK, Brette R
Frontiers in Neuroscience (2011) 5:9
doi: 10.3389/fnins.2011.00009


Computational modeling is increasingly used to understand the function of neural circuits in systems neuroscience. These studies require models of individual neurons with realistic input-output properties. Recently, it was found that spiking models can accurately predict the precisely timed spike trains produced by cortical neurons in response to somatically injected currents, if properly fitted. This requires fitting techniques that are efficient and flexible enough to easily test different candidate models. We present a generic solution, based on the Brian simulator (a neural network simulator in Python), which allows the user to define and fit arbitrary neuron models to electrophysiological recordings. It relies on vectorization and parallel computing techniques to achieve efficiency. We demonstrate its use on neural recordings in the barrel cortex and in the auditory brainstem, and confirm that simple adaptive spiking models can accurately predict the response of cortical neurons. Finally, we show how a complex multicompartmental model can be reduced to a simple effective spiking model.


Related software


A Python simulator for spiking neural networks.