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Abstract

We prove that the boundaries of the Maskit and Bers slices contain an uncountable, dense set of
points about which the boundary spirals infinitely. The set of points about which we prove the

boundary spirals infinitely has zero measure and is akin to a countable union of Cantor sets. On
the basis of strong numerical evidence, we conjecture that in fact the boundary spirals infinitely at

almost all points in the boundary. We further conjecture that the Hausdorff dimension of the
Maskit slice is less than 1.25.



Chapter 1

Introduction

The purpose of this thesis is to provide a picture, partly proven and partly conjectural on the basis
of strong numerical evidence, of the shape of the boundaries of various slices of quasifuchsian space.
We will focus on the Maskit and Bers slices, which have particularly nice algebraic structures.

Roughly speaking, a quasifuchsian manifold is a hyperbolic 3-manifold obtained by taking a once-
punctured torus crossed with an interval. This is illustrated in the leftmost picture in figure 2.2.
Quasifuchsian space QF is, again roughly speaking, the space of hyperbolic geometries of a quasi-
fuchsian manifold. This object is 2-complex dimensional, and is therefore quite difficult to visualise.
We will work with slices of quasifuchsian space, which are 1-complex dimensional subsets, somewhat
like its intersection with a plane.

The boundary of quasifuchsian space has a very detailed, seemingly fractal structure. You can see
this in figure 1.1 which shows a portion of the Maskit slice of QF . The fine detail appears at every
scale. Indeed, zooming in on any area of the Maskit slice gives a picture which hardly differs from
figure 1.1 at all. It has not been proven that the Maskit slice is self-similar, but it certainly seems
to be. For some partial results, see [Miyachi03].

Figure 1.1: Detail from the Maskit slice, with the interior shaded grey

In a self-similar set where the similarities involve a rotation as well as a scaling, spirals appear
naturally. Well known pictures of the Mandelbrot set, Julia sets and so forth vividly illustrate
this (or see figure 2.1). If slices of QF are indeed self-similar, then we would expect to see spirals
appearing in them too. On the face of it, looking at figure 1.1 doesn’t immediately suggest that
there are spirals in the boundary. Figure 1.2 on the other hand shows a series of zooms into the
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Maskit slice, and it is apparent that the picture is slowly rotating. We imagine that this process
could be continued indefinitely. The spirals are there, but they appear at such tiny scales that is
impossible to see them in any one picture. The main aim of this thesis is to show that these spirals
really do exist. We prove in chapter 4 that there is a dense and uncountable set of points at which
the boundary spirals infinitely. This set has zero measure – it is akin to a countable union of Cantor
sets. In chapter 5 we conjecture on the basis of strong numerical evidence that in fact the boundary
spirals at almost all points. Using related methods and evidence, we also make some conjectures
about the Hausdorff dimension of the Maskit slice.

Figure 1.2: Successive zooms into the Maskit slice suggesting spiralling. The figures go from the top
left to the bottom left in a clockwise order. The grey rectangles show the area being zoomed to in
the next frame.

The Maskit and Bers slices embedded in C are simply connected sets with non-self-intersecting
boundaries (see [Minsky99]). It is apparent from looking at the pictures that there is a seemingly
dense set of special points, where the boundary of the slice sharply points inwards. These points are
the cusp points of the slice, and they are particularly important as they give us a very good handle
for studying the slice. These points are indeed dense in the boundary (see [McMullen91]). They
are called cusp points because at these points there are cusps in the associated 3-manifold, but by
coincidence the shape of the boundary is itself cusp shaped at the cusp points (see [Miyachi03]),
which introduces an unfortunate ambiguity about the word “cusp”.

It turns out that each cusp can be labelled with a rational number p/q, and that these correctly
order the cusps. We will use the notation µp/q for the location of the p/q-cusp in whatever slice we
are looking at. There is also a curve associated to each cusp, called the p/q-pleating ray, written
℘p/q. These rays are entirely contained within the slice. For the Maskit slice, they turn out to be
defined by a polynomial equation associated to each cusp. Each pleating ray starts at µp/q and
initially moves in the direction in which the cusp is pointing. See figure 1.3.

Figure 1.4 shows part of the Maskit slice with many pleating rays shown. As you can see, they have
a very interesting structure. The approach we take in this thesis is to show first that there is an
indefinitely large amount of spiralling at the cusp points in the boundary. Roughly speaking, if we
assigned to each cusp point µp/q an integer Sp/q defined to be the number of times the pleating ray
℘p/q spiralled around the point µp/q, then our first step is to show that in any open set U ⊆ R,
the integers Sp/q for p/q ∈ U are unbounded. We call this spiralling to an indefinite extent. The
next step is to show that for certain sequences pn/qn → ω with Spn/qn

→ ∞, the boundary spirals
infinitely at the limit point limn→∞ µpn/qn

.

We start out by reviewing some of the relevant theory of hyperbolic geometry in chapter 2. In
chapter 3 we define the idea of a slice of QF , and define the Maskit, Bers and Earle slices in
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℘p/q

µp/q

Figure 1.3: Maskit slice with single pleating ray

particular. The original work starts in chapter 4 in which we prove that there is spiralling to an
indefinite extent, and infinite spiralling at an uncountable, dense set of points. Chapter 5 contains
the conjectural material and numerical evidence, including the conjecture that the boundary spirals
infinitely almost everywhere, and conjectures about the Hausdorff dimension of the Maskit slice.
Finally, in chapter 6 we discuss the algorithms used in finding this evidence. We hope that this
might be of use to anyone else interested in studying this subject experimentally.

Appendix A lists the notation used in this thesis.
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Figure 1.4: Maskit slice with many pleating rays
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Chapter 2

Hyperbolic geometry and

deformation spaces

2.1 Kleinian groups and quasifuchsian manifolds

A Kleinian group is a discrete subgroup G ≤ PSL2C. The regular set, or domain of discontinuity of
G is the largest set Ω ⊆ Ĉ on which G acts properly discontinuously. The complement Λ = Ĉ − Ω
is called the limit set of G (see figure 2.1). If G has an invariant disc ∆ ⊆ Ĉ then G is a Fuchsian
group and Λ is contained in the boundary of the disc.

Ω+

Ω−

Λ

Figure 2.1: Limit set and domains of discontinuity of a once punctured torus group. (Figure courtesy
of David Wright.)

For finitely generated G, the quotient manifold Ω/G is a finite union of Riemann surfaces of finite
type (see [Ahlfors64] and [Kapovich01]). If Ω/G consists of two once-punctured tori then G is
called a quasifuchsian once-punctured torus group. In this case, Ω consists of two connected, simply
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connected, G-invariant components Ω+ and Ω− such that each of Ω±/G is a once punctured torus.
The limit set will be a topological circle separating Ω±. Figure 2.1 illustrates this. The group G will
be a free group on two generators 〈A,B〉, where the commutator [A,B] is parabolic, which we can
identify with the fundamental group of a once punctured torus. Write Σ for a fixed once-punctured
torus. The group G acts on the hyperbolic upper half space H3, and we define the manifold

M = (H3 ∪ Ω)/G.

This is a quasifuchsian manifold and is homeomorphic to Σ× [0, 1]. The boundary has two compo-
nents Ω±/G corresponding to Σ × {0} and Σ × {1}. The leftmost manifold, M1, in figure 2.2 gives
a schematic view of this. See [MatTan98], [Marden74] and [Marden06] for details.

M1

Σ+
1

Σ−
1

M2

Σ+
2

Σ−
2

M3

Σ+
3

Σ−
3

Figure 2.2: Various manifolds

We can consider the group G along with a choice of generators A,B as a discrete representation

ρ : π1(Σ) = 〈X,Y 〉 −→ PSL2C,

such that ρ([X,Y ]) is parabolic. Here we can think of X and Y as abstract symbols, or as generators
of π1(Σ).

2.2 Deformation spaces

Thinking of once-punctured torus groups as representations subject to certain constraints gives us
a nice way of defining the space of once-punctured torus groups. This deformation space is defined
as follows. See [Kapovich01], [MatTan98] and [Marden06] for details. First of all, let

Γ = π1(Σ) = 〈X,Y 〉.

Now define
R(Γ) = Hom(Γ,PSL2C)/PSL2C

to be the representation space of Γ modulo conjugation by PSL2C. Similarly, we define

Rp(Γ) = {[ρ] ∈ R(Γ) : ρ([X,Y ]) is parabolic}.

We define quasifuchsian space QF to be the set of those classes of representations [ρ] ∈ Rp(Γ)
whose images are quasifuchsian once-punctured torus groups.

The Teichmüller space Teich(Σ) of Σ is the space of marked complex structures on Σ with the
Teichmüller metric. A marking is just an ordered choice of generators of π1(Σ). The Teichmüller
metric is defined in terms of quasiconformal maps, but we need only note here that Teich(Σ) is
isometric to the hyperbolic upper half plane H = H2. See [ImaTan92], [Lehto87] and [Bers70] for
details.

12



Bers’ Simultaneous Uniformisation theorem [Bers60] implies that QF is conformally equivalent to
Teich(Σ)×Teich(Σ) (where Σ is Σ with the reverse orientation). Elements of QF are characterised
by the Teichmüller parameters ν± of the two boundary components Ω±/G.

We can complete QF to QF . We define QF to be the algebraic closure of QF in Rp(Γ). In a
neighbourhood of QF , Rp(Γ) is a smooth complex variety of dimension 2 (see [Kapovich01]). In
figure 2.2, the manifolds M2 and M3 are elements in the boundary of QF . See section 2.5 for more
details.

Although QF is conformally equivalent to H×H, the completion QF has an extremely complicated
structure. Figure 2.3 is a picture of an “exotic slice” of QF . You can see that the boundary is not a
simple curve. There are now many papers detailing the complicated way in which QF self-intersects,
see for example [BromHolt01].

Figure 2.3: An exotic slice of QF . The large white regions are outside QF , the regions filled with
dots are inside. (Figure courtesy of David Wright.)
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2.3 Combinatorics

2.3.1 Farey series

The Farey series and Farey graph are the foundation of the combinatorics of the Maskit and Bers
slices, which we will define later. We define Q̂ = Q ∪ {∞} (and similarly R̂ = R ∪ {∞}). Rational
numbers p/q and r/s satisfying ps − rq = ±1 are said to be Farey neighbours. For such fractions
we define the operation of Farey addition ⊕ by

p

q
⊕ r

s
=
p+ r

q + s
.

The Farey graph, embedded in the hyperbolic upper half plane model in figure 2.4, has vertex set
Q̂, and two vertices are connected by an edge if they are neighbours. If p/q and r/s are neighbours,
then p/q, r/s and p/q ⊕ r/s are the vertices of a triangle in the Farey graph. As mentioned in
the introduction, cusp points correspond to rational numbers p/q. Two cusps whose corresponding
rationals are Farey neighbours will be said to be neighbouring cusps.

1/20/1 1/11/3 2/31/4 3/4-1/2 -1/3-1/4 3/24/35/4

Figure 2.4: The Farey graph

2.3.2 The curve complex

We have already defined Σ to be a fixed once-punctured torus, now define S to be a fixed torus, say
Σ = S − {∗}. Now both π1(S) and π1(Σ) are generated by X and Y . The group π1(S) is the free
Abelian group Z2, whereas, as we have noted, π1(Σ) = 〈X,Y 〉. Every free homotopy class of a simple
closed curve on S or Σ is represented by an element of the fundamental group corresponding to an
element of Q̂. On S, it is represented by the element XqY p. On Σ, the same curve is represented by
the word Wp/q defined inductively below. This will be very important throughout the rest of this
thesis.

W0/1 = X

W1/0 = Y

W−1/0 = Y −1

Wp/q⊕r/s = Wp/qWr/s if ps− rq = −1

Wp/q⊕r/s = Wr/sWp/q if ps− rq = 1

See [Wright88], [KeenSeries93] and [Series85] for more details. Essentially, to find the word Wp/q

you do the following (see figure 2.5). Draw an integral grid in the plane. Now draw a straight line
of gradient p/q through the origin. Each time it intersects a vertical line of the grid you write X
and each time it intersects a horizontal line of the grid you write Y . You continue until you get to
an integral point. This corresponds to finding a simple, closed curve on Σ in the same homotopy
class as XqY p on S. The inductive definition above gives a conjugate of this word, but the algebraic
properties of the specific word Wp/q are important (because of the trace identities described in
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section 6.2.1).

Figure 2.5 demonstrates this for W2/3. Reading off the word generated by that method gives
XYX2Y . This turns out to be a conjugate (a cyclic reordering) of Wp/q. It is easy to see that
you can cyclically reorder because you can move your starting point without changing the free
homotopy class. For example, from the origin to the point (5/3, 10/9), between the first Y and the
second X.

X

Y

X

XY

Figure 2.5: Finding W2/3 on the once-punctured punctured torus using gradients

We can compute W2/3 using the recursive formula as follows. Firstly, W1/1 = W0/1W1/0 as 0/1 ⊕
1/0 = 1/1, so W1/1 = XY . Now W1/2 = W0/1W1/1 = X2Y . Finally W2/3 = W1/2W1/1 = X2Y XY .
This process is illustrated in figure 2.6. Each edge of the graph intersected by the vertical line ending
at 2/3 is a step in the inductive definition of W2/3 (see [Series85] for more on this).

1/20/1 1/11/3 2/31/4 3/42/5 3/5

Figure 2.6: The Farey graph, showing how to get to 2/3

2.4 Pleating invariants

2.4.1 The convex core

The convex core of M is the smallest hyperbolic closed set containing all the closed geodesics in M .
An equivalent way to define it is to define C to be the hyperbolic convex hull of the limit set Λ in
H3. The projection C/G is the convex core of M . If G is Fuchsian then C will be a hyperbolic plane,
otherwise if G is a quasifuchsian once-punctured torus group then C will be a three-dimensional
subset with two boundary components ∂C± facing on to Ω±. We consider only the case of G
quasifuchsian. See [EMM03], [EMM03a], [EpsMar06], and [Thurston80] for more details.
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Figure 2.7: Convex hull boundary (right) of a once punctured torus group with limit set (left).
(Figure courtesy of Yair Minsky.)

The boundary of C consists of totally geodesic faces separated by geodesic bending lines (see the
right hand side of figure 2.7). The set of bending lines is the bending locus. This locus projects
to a geodesic lamination on ∂C±/G, with a transverse measure pl±(G). A geodesic lamination is
a closed, disjoint set of geodesics (called the leaves of the lamination). A transverse measure is a
measure on curves transverse to the lamination. In the case where the geodesic lamination consists
only of closed geodesics, we think of a transverse measure as just assigning a weight to each geodesic.
The surface ∂C±/G is homeomorphic to Σ, and carries a natural pleated surface structure from the
hyperbolic metric on M . Here, we need only note that for points not on a bending line, there is
a local hyperbolic metric, and that there is a hyperbolic metric along the bending lines. We will
use pl±(ρ) to mean pl±(ρ(Γ)) and so forth. The right hand side of figure 2.7 shows the convex hull
boundary of the limit set on the left hand side. See [KeenSeries04] for more details and [Series99]
for a very clear exposition.

2.4.2 Rational pleating varieties

If the bending locus projects to a single closed curve on ∂C/G, then this curve will be represented

by p/q for some p/q ∈ Q̂. In fact, this curve will be the projection of the axis of Wp/q. In this case,

we say that it is a rational pleating locus. The transverse measure pl±(G) simply assigns a weight
to the curve corresponding to the angle between the two planes in ∂C on either side of it.

Let γp/q be the geodesic on ∂C±/G corresponding to the word Wp/q. We write |pl± | to mean the

support of the transverse measure pl±. The (p/q, r/s)-pleating variety is defined to be the set of
elements of QF which have the p/q and r/s geodesics as their bending loci. That is, the pleating
variety is defined by

℘p/q,r/s = {[ρ] ∈ QF : |pl+(ρ)| = γp/q, |pl−(ρ)| = γr/s}.

2.4.3 Pleating invariants and coordinates

A measured geodesic lamination is just a geodesic lamination together with a transverse measure
on it. The space of measured geodesic laminations on a hyperbolic surface S is written ML(S).
Note that the set ML(S) does not depend on the hyperbolic metric on S (see references in
[KeenSeries04]). The space of projective classes is written PML(S), and if S is a once-punctured
torus it is homeomorphic to S1. We define the lamination length `µ of a measured geodesic lami-
nation µ ∈ ML to be the total mass of S for the measure given by the product of the hyperbolic
length along the leaves of the geodesic lamination |µ| with the transverse measure µ. See [CEG87],
[Bonahon01] and [Thurston80] for more details. Given a group G we can identify ∂C±/G with Σ and
therefore ML(∂C±/G) with ML(Σ). The quantity `µ for µ ∈ ML(Σ) depends on G via the pleated
surface structure on ∂C±/G. If µ′ = cµ for some c > 0 then `µ′ = c`µ. If G is not Fuchsian (that
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is, the components Ω± are not round disks), then the projective classes of (µ±, `µ±), for any choice

of µ± ∈ [pl±(G)], are the pleating invariants of G. Keen and Series prove in [KeenSeries04] that a
non-Fuchsian marked punctured torus group is determined uniquely up to conjugacy in PSL2C by
its pleating invariants.

If the axis ofW ∈ G is a bending line of ∂C±/G then Tr(W ) ∈ (−∞,−2)∪(2,∞). See [KeenSeries93]
for the proof, but in brief this follows because W fixes ∂C± and the two planes whose intersection
is the axis of W , meaning that W must be purely hyperbolic. The complex length λ(W ) of W is
defined to satisfy

Tr(W ) = 2 coshλ(W )/2,

with the additional requirement that Reλ(W ) > 0 and Imλ(W ) ∈ (−π/2, π/2). We write `(W ) for
Reλ(W ), this is the translation length of W . If the axis of W is a bending line then λ(W ) ∈ R>0.

Define δγ ∈ ML to be the transverse measure on Σ which simply assigns the weight 1 to the geodesic
γ. If |pl±(G)| = γ, with γ the geodesic corresponding to W , then we can write pl±(G) = θδγ , where
θ is the angle between the pleating planes that join at γ. Now `δγ

= `(W ), which is also the
hyperbolic length of the geodesic γ. The projective pair (δγ , `δγ

) is the same as that of the pair

(pl±(G), `pl±(G)). This defines coordinates

φ : ℘p/q,r/s −→ R>0 × R>0; [ρ] 7→ (`(ρ(Wp/q)), `(ρ(Wr/s)))

for the rational pleating variety ℘p/q,r/s (see [KeenSeries04]). Moreover, the set of rational pleating
varieties is dense in QF (see [KeenSeries04]), and the complex lengths (λ(Wp/q), λ(Wr/s)) are
smooth local coordinates at any point in a neighbourhood of ℘p/q,r/s in QF (see [ChoiSeries06]).

Suppose you chose a path ρ : (0,∞) → ℘p/q,r/s such that `(Wp/q(ρ(t))) = t and `(Wr/s(ρ(t)))
is fixed. The limit of ρ(t) as t → 0 is an element ρ(0) ∈ ∂QF . The + end of the corresponding
manifold will be a triply punctured sphere (like manifold M2 in figure 2.2). As t gets closer to 0,
the length of γp/q gets closer to 0 until finally in the limit it disappears. We say that γp/q has been
pinched to a point. We say that the corresponding manifold M has a cusp corresponding to γp/q.

2.5 End invariants

We will also use another set of coordinates for QF . If [ρ] ∈ QF then any component of Ω can
be reached either by going to the + end or the − end of M , this divides Ω into two G-invariant
subsets Ω±. There are three possibilities for each of Ω±, and the definition of the corresponding
end invariant ν± is as follows.

1. Ω± is a topological disc, Ω±/G is a once-punctured torus. In this case we define ν± to be the
Teichmüller parameter of Ω±/G. Manifold M1 in figure 2.2 has both ends of this type.

2. Ω± is an infinite union of discs, Ω±/G is a triply-punctured sphere obtained from the boundary
of Σ × (0, 1) by deleting a curve γ±. This curve corresponds to an element Wp/q and in this
case we define ν± = p/q. This is the case where the curve γp/q has been pinched discussed
above. Manifold M2 in figure 2.2 has one end of this type, and one end of the first type.
Manifold M3 has both ends of this type.

3. Ω± is empty. This case can be considered a limit of cases where ν± = p/q and we get
ν± ∈ R − Q.

Writing R̂ = R ∪ {∞} = S1, we define H = H ∪ R̂ (or equivalently H is a closed disc), and ∆ to

be the diagonal of R̂ × R̂. For any representation [ρ] ∈ QF we can assign its pair of end invariants
(ν−, ν+) ∈ (H × H) − ∆. There is a continuous bijection

ν−1 : (H × H) − ∆ −→ QF

(but the inverse map ν is not even continuous). If a marked punctured torus group is in ∂QF =
QF −QF then either ν± ∈ Q ∪ {∞} corresponding to pinching a curve on Ω±/G of slope ν± to a
point, or ν± is an irrational real. See [Minsky99], [Bonahon86] and [Thurston80] for more details.
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Chapter 3

Slices of quasifuchsian space

A slice of quasifuchsian space is a one-complex dimensional subset of QF . The prototypical slice is
a Bers slice. This is the set of elements of QF with a fixed once-punctured torus structure on one
or other of the two ends of M . In terms of end invariants, a Bers slice B is just ν−1({∗}×H−{∗})
or ν−1((H − {∗}) × {∗}) where ∗ ∈ H. The interior of a Bers slice consists of manifolds of type M1

in figure 2.2, and the boundary consists of manifolds of type M2.

A Maskit slice, which we will occasionally denote M, is a slice of the boundary of QF , and is defined
in the same way as the Bers slice except that we require ∗ ∈ Q̂. These are sometimes referred to as
rational Maskit slices, and sometimes as limit Bers slices. The interior of a Maskit slice consists of
manifolds of type M2 in figure 2.2, and the boundary consists of manifolds of type M3.

We will primarily be concerned with Maskit and Bers slices, with particular emphasis on the former
as they have a nice algebraic structure.

Other slices are the Earle slice in which the two ends of M are required to have end invariants
satisfying ν+ν− = 1; the lambda slices; etc.

For slices of QF , a pleating ray is the one-complex dimensional analogue of the pleating varieties
discussed in section 2.4.2. In the notation of that section we define

℘p/q = {[ρ] ∈ QF : |pl+(ρ)| = γp/q or |pl−(ρ)| = γp/q}.

The p/q-pleating ray for a slice is the intersection of ℘p/q with the slice. Abusing notation, this
pleating ray will also be written ℘p/q. These rays can be seen in figures 3.2, 4.5 and 4.8.

Consider the function
TrW : QF −→ C/{±1}; [ρ] 7→ Tr(ρ(W )).

If [ρ] is in some slice of QF and [ρ] ∈ ℘p/q then it satisfies

TrWp/q
([ρ]) ∈ (−∞,−2) ∪ (2,∞).

However, not all [ρ] satisfying this trace condition will be in the pleating ray. The locus of points
satisfying TrW8/21

∈ R for the Maskit slice is shown in figure 3.1.

3.1 Cusps

A cusp in the boundary of QF is a point where some element of G has become parabolic (sometimes
called accidentally parabolic). That is, an element [ρ] ∈ QF such that ρ(W ) is parabolic for some
W ∈ Γ. If there is a generating pair W1,W2 ∈ Γ such that ρ(W1) and ρ(W2) are both parabolic
then [ρ] is called a double cusp.

Cusps are dense in the boundary of QF (see [McMullen91]) and getting computers to systematically
find cusps turns out to be a very good way of drawing pictures of slices of QF (although not
the only way). They are connected to pleating rays in that at the end point of a pleating ray,
the corresponding word Wp/q is parabolic, as TrWp/q

([ρ]) = ±2. This fact leads to an algorithm,
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Figure 3.1: Real locus of TrW8/21
in the Maskit slice. There are 21 smooth, connected subsets, each

tending to ∞ at both ends.

discussed later, for finding cusps.

3.2 Embeddings

In order to be able to draw pictures of a slice, you need to embed it in C. There are standard ways
of doing this for various slices.

3.2.1 Maskit

The Maskit slice (see [Maskit74]), can be very simply embedded in C in the following way. Define

g : C −→ Hom(Γ,SL2C)

by

g(µ)(X) = −i
(

µ 1
1 0

)

, and g(µ)(Y ) =

(

1 2
0 1

)

.

Let ± : SL2C → PSL2C be the quotient map. The map [g] : C → Rp(Γ) is defined by setting
[g](µ) = [±g(µ)], and the set M = [g]−1(QF) ∩ H is shown in figure 3.2. The jagged curve at
the bottom is the boundary, and continues periodically in the same fashion with period 2. The
slice itself consists of the points on the upper side of this curve. The almost vertical curves coming
out of points on the boundary curve are the pleating rays. See [KeenSeries93] and more generally
[KeenSeries04] for more details.

You can see in figure 3.2 that none of the pleating rays intersect any of the other pleating rays. This
is true, and furthermore the pleating rays are dense in M. In fact, you can even use pleating rays
to define pleating coordinates. If µ ∈ ℘p/q and Reλ(Wp/q(µ)) = ` say then write M(µ) = (p/q, `/q).
This extends by continuity to a homeomorphism M : M → R × R>0. The (rational) pleating rays
are interpolated by irrational pleating rays M−1({ω} × R>0) for irrational ω, which correspond
to irrational bending laminations. Horizontal and vertical lines for these coordinates are shown in
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2

20

Figure 3.2: The Maskit slice, with pleating rays and interior shaded grey

figures 3.3 and 3.4. See section 2.4, and [KeenSeries93] for more details.

Figure 3.3: The Maskit slice, with pleating coordinates shown. (Figure courtesy of David Wright.)

3.2.2 Bers

We do not give the full details of the Bers embedding because they are not relevant to the results
in this thesis. See [Bers70], [Maskit70], [KomSug04] and [Tanigawa97] for more details.

A complex projective structure on a surface S is an atlas of charts whose transition maps are
restrictions of elements of PSL2C acting as Möbius transformations on C. We write P (S) for the
space of complex projective structures on S. We consider P (Σ). Given a complex projective structure
on Σ we get a holonomy map ρ : Γ → PSL2C. Taking holonomy gives us a map P (Σ) → Rp(Γ).

On the other hand taking the Schwarzian derivative of the developing map of a projective structure
gives us a quadratic differential φ. This identifies the space P (Σ) with the space B2 of quadratic
differentials. This space has complex dimension 1. Identifying C with B2, B2 with P (Σ) and using
the holonomy map we get a map χ : C → Rp(Γ). The connected component of χ−1(QF) containing
0 is the Bers slice B.

Figure 3.5 shows the Bers slice in C.

3.2.3 Earle

The Earle slice is defined by imposing certain symmetries on elements of QF . We give an explicit
embedding of the Earle slice in C, and then discuss the symmetries.

As in the case of the Maskit slice, we give an explicit map g : C − {0} → Hom(Γ,SL2C) by

g(d)(X) =

(

d2+1
d

d3

2d2+1
2d2+1

d d

)

, and g(d)(Y ) =

(

d2+1
d − d3

2d2+1

− 2d2+1
d d

)

.
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Figure 3.4: Detail from the Maskit slice, with pleating coordinates shown. (Figure courtesy of David
Wright.)

As before, let ± : SL2C → PSL2C be the quotient map and define the map [g] : C → Rp(Γ) by
setting [g](d) = [±g(d)]. The Earle slice is illustrated in figure 3.6.

Write θ : Γ → Γ for the involution θ(X) = Y and θ(Y ) = X, and Θ : Ĉ → Ĉ for the involution
Θ(z) = −z. For the Earle slice as defined above, we have the symmetry that for any γ ∈ Γ, and

any z ∈ Ĉ, Θ(γz) = θ(γ)Θ(z). In particular, writing A = g(d)(X) and B = g(d)(Y ), we have
that A(z) = −B(−z). We also have that Θ restricts to a conformal homeomorphism Ω± → Ω∓.
These symmetries can be made into a general definition for a class of Earle slices Eθ defined by any
involution θ on Γ. For this particular choice of parameterisation, we also get that the Earle slice is
symmetric with respect to the maps σ(d) = d and σ(d) = 1/2d, and that TrA = TrB. This last
fact is related to another way of looking at the Earle slice. That is, if you embed QF in C3 by
sending [ρ] to (Tr ρ(X),Tr ρ(Y ),Tr ρ(XY )), then the Earle slice becomes QF ∩ {(x, y, z) : x = y}.
See [KomSer01] for more details about the Earle slice.

Figure 3.5: The Bers slice, with the inside shaded grey and pleating rays shown. (Figure courtesy
of Yohei Komori and Toshiyuki Sugawa.)
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Figure 3.6: The Earle slice, with pleating rays. (Figure adapted from Peter Liepa.)

3.2.4 General setup

To cover the case of the Maskit and Bers slices in one, we define a slice of QF by choosing an
injective holomorphic map f : C → Rp(Γ). A certain open subset K ⊆ C will consist of all the
interior points of the slice, so that f maps K biholomorphically to either the Maskit or Bers slice
contained in Rp(Γ). In both cases, the boundary ∂K is a simple curve, and K is simply connected
(see [Minsky99]). Abusing language somewhat, we will also sometimes refer to the set K or K as
the slice without mentioning f .

3.3 Cusp shape

In [Wright88], David Wright showed, on the basis of conjectures now proven (with one exception,
about which more later), that for a cusp p/q in the Maskit slice, the set of cusp points corresponding
to Farey neighbouring fractions is approximately (2, 3)-cuspidal. More precisely, if p/q and r/s are
Farey neighbours, and rn = (np + r)/(nq + s) → r∞ = p/q, define µn to be the cusp point
corresponding to rn and µ∞ to be p/q (see figure 3.7). Then he showed that

µn = µ∞ − π2

A1n2
+

δπ2i

A1n3
(2 +B0) +O

(

1

n4

)

(3.1)

where A1, B0 and δ are constants. In particular, Re(A1(µn−µ∞)) = −π2/n2+O(n−3), Im(A1(µn−
µ∞)) = C/n3 +O(n−4) (for a real constant C), so that zn = A1(µn − µ∞) approximately satisfies
an equation of the form aRe(zn)3 = Im(zn)2. A curve of points (x, y) is a (2, 3)-cusp if it satisfies
ax3 = y2.

In [Miyachi03], Hideki Miyachi showed that for the Earle, Maskit and Bers slices, there is a neigh-
bourhood of a cusp in which not only the set of neighbouring cusp points, but the whole boundary
curve is approximately (2, 3)-cuspidal. More precisely, he showed that the boundary of any of these
slices in the neighbourhood of a cusp is (2, 3)-cuspidal in the following sense.

Definition 3.3.1 A (2, 3)-cusp curve is a possibly translated and scaled copy of the graph x2 = y3

in R2. The cusp point is the translated image of (0, 0). A curve γ is (2, 3)-cuspidal at a point P ∈ γ
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µp/q µr/s

µr1
µr2

µr3

µr4

Figure 3.7: Enumerating neighbouring cusps

if in a neighbourhood of P there are two (2, 3)-cusp curves with cusp points at P such that γ is
contained in the region between the two curves. Figure 3.8 shows this in the case of the boundary of
a slice, the two (2, 3)-cusps are shown dashed, and the boundary curve γ is unbroken.

Figure 3.9 shows an actual plot of a neighbourhood of a cusp in the Maskit slice (with pleating
rays).

Inside

slice

Outside

slice

µ

1/Tr′(µ)

Figure 3.8: Local structure of the boundary near a cusp

3.4 Trace functions

For a word W ∈ Γ and a slice f : C → Rp(Γ), the trace function TrW : C → C is defined by
TrW (µ) = Tr f(µ)(W ). In fact, this only defines TrW up to ±1 but if µ ∈ K then you can choose
a sign for TrW in a neighbourhood of f(µ) (or equivalently in a neighbourhood of µ) because
Tr f(µ)(W ) 6= 0 for a free representation f(µ). The quantity Tr2W is always well defined. If W
corresponds to a cusp and µW is the cusp point on ∂K corresponding to W , then Tr2W (µW ) = 4.
The pleating ray corresponding to W is the unique connected subset ℘W ⊆ K of (Tr2W )−1((4,∞))
ending at the point µW . If we choose a sign for TrW in a neighbourhood of µW and parameterise
℘W by ψ : [2,∞) → C so that TrW ψ(t) = t and differentiate, we get ψ′(t)Tr′W (ψ(t)) = 1. In
particular, the initial direction of ℘W is ψ′(2) = 1/Tr′W (µW ). This is also the direction in which
the approximately cuspidal boundary points (see section 4.1).

It is proved in [Miyachi03], and more generally in [ChoiSeries06], that:

Proposition 3.4.1 Tr′W (µW ) 6= 0
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Figure 3.9: A cusp with some neighbouring cusps in the Maskit slice. The thick line is the boundary,
the thinner lines are the pleating rays.
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Chapter 4

Spirals in the boundary

In this chapter we define the terms of the following two theorems and prove them.

Theorem 4.0.2 The boundaries of the Maskit and Bers slices spiral to an indefinite extent in both
directions near every point.

Theorem 4.0.3 The boundaries of the Maskit and Bers slices spiral infinitely at an uncountable
dense set of points.

Figure 4.1 is a series of zooms into the Maskit slice. This figure gives an intuitive view of the proof
of theorem 4.0.2. Computer plots suggest that if r/s is a very close Farey neighbour of p/q then
the direction of the r/s-cusp is approximately perpendicular to that of the p/q-cusp (see figures 3.9
and 4.3). By starting at any cusp and repeatedly looking at very close Farey neighbours on the
same side, it would seem that for any n we can find a curve within the slice which spirals at least
n times around a point very close to the initial cusp in the boundary. This in turn would show
that the boundary itself spirals to an indefinite extent arbitrarily near every point on the boundary.
Furthermore, it would seem that at the limit point of a sequence of cusps about which the boundary
spirals ever more, the boundary would spiral infinitely.

Figure 4.1: Successive zooms into the Maskit slice suggesting spiralling. The figures go from the top
left to the bottom left in a clockwise order. The thick black is the boundary, the thinner lines are
the pleating rays and the dashed rectangle shows the area being zoomed to in the next frame.

25



4.1 Spiralling

Defining the term spiralling is just a matter of capturing what is presumably already a shared
intuitive idea. In figure 4.2, it is clear that both the inside and the outside of the slice “spiral
around” the cusp point; and that the boundary, or any curve contained entirely inside our entirely
outside the slice, “spirals around” the cusp point as well.

Inside

Outside

Boundary

Cusp

Figure 4.2: Spiralling - the outside spirals into the cusp, and so does the inside

Our definition of spiralling will be relative to a base point z0 whose choice will turn out to be
irrelevant. Suppose that K ⊆ C ∪ {∞} is any domain with ∂K a simple curve. In particular,
K must be simply connected and connected. Fix the base point z0 ∈ K. Now choose a point
z1 ∈ ∂K. Since K − {z1} is simply connected and does not contain z1, we can define a branch of
log(z − z1) on this region. In particular, choose the unique branch with Im log(z0 − z1) ∈ [−π, π).
Write L(z) = log(z − z1).

Definition 4.1.1 The degree of spiralling of any continuous curve α : [0, 1] → K connecting z0 to
z1 with a smooth endpoint and α′(1) 6= 0 is

sp.degα = lim
t→1

ImL(α(t)) − ImL(z0).

The smoothness of α at the endpoint guarantees that sp.degα <∞. Such curves may not exist (in
particular, if the boundary is spiralling infinitely at that point, see below).

Definition 4.1.2 The degree of spiralling at a boundary point z1 is defined to be the set

Sp.Deg z1 = { sp.degα : α joins z0 to z1 }.

It turns out that for z1 a cusp, all curves ending at z1 have approximately the same spiralling
degree, and that the exact value of the spiralling degree of a curve α depends only on the direction
of the curve at the endpoint, α′(1). The following lemma is not necessary, but helps to justify the
usefulness of the definition of spiralling given here.

Lemma 4.1.1 If K is the Maskit or Bers slice, and µp/q ∈ ∂K is a cusp, then diam Sp.Degµp/q ≤
2π. Moreover, two curves α1 and α2 with smooth endpoints joining the base point µ0 to µp/q sat-
isfy α′

1(1)/|α′
1(1)| = α′

2(1)/|α′
2(1)| if and only if either sp.degα1 = sp.degα2 or | sp.degα1 −

sp.degα2| = 2π. Assuming sp.degα1 < sp.degα2, the latter situation can only occur if Sp.Deg µp/q =
[sp.degα1, sp.degα2].

Proof Let f : C → Rp(Γ) be a Maskit or Bers slice with f(K) ⊆ QF as defined in section 3.2.
We are considering the boundary point µp/q, the p/q-cusp of a Maskit or Bers slice. The associated
p/q-word is Wp/q ∈ Γ. Write Trp/q : U → C for the associated trace function, defined by Trp/q(µ) =
Tr(f(µ)(Wp/q)), chosen in a neighbourhood U ⊆ C of µp/q so that Trp/q(µp/q) = 2. The base point

is µ0 ∈ K and the function L is the branch of log(µ − µ0) defined on K. Proposition 3.4.1 asserts
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that Tr′p/q(µp/q) 6= 0. From this we can deduce that there is a smooth curve in the complement of

K ending at the point µp/q. Consider the set of points µ ∈ U satisfying Trp/q(µ) ∈ (0, 2). Let ℘−

be the connected component of this set ending at µp/q. Any such µ ∈ ℘− cannot be in K, because
for such µ the word f(µ)(Wp/q) is elliptic and therefore the associated group f(µ)(Γ) could not be
discrete. Moreover ℘− is a smooth curve because it is contained in the real locus of an analytic
function.

Choose a sufficiently small ball Bε (of radius ε about µp/q) that ℘− ∩Bε is a simple curve. ℘− ∩Bε

connects µp/q to the circle ∂Bε. Write Cε = Bε −℘−. Given 0 < η < 2π we can choose ε sufficiently

small that ℘− ∩Bε is contained in a sector of Bε of angle η. Write Kε = (K − {µp/q}) ∩Bε. Since
Kε ⊆ Cε, we have that for any two points µ1, µ2 ∈ Kε, | ImL(µ1) − ImL(µ2)| ≤ 2π + η. Letting
η → 0 we can easily see that | sp.degα1 − sp.degα2| ≤ 2π. Write α̂i for α′

i(1)/|α′
i(1)|. If the spiral

degree of α1 and α2 is the same, then clearly α̂1 = α̂2. Write ℘̂− for the tangent direction of
℘− at µp/q (which is well defined because Tr′p/q(µp/q) 6= 0). If sp.degα2 = sp.degα1 + 2π then
α̂1 = α̂2 = ℘̂−. This situation occurs if the two curves α1 and α2 approach µp/q on different sides
of ℘−. It is also clear that if 0 < | sp.degα1 − sp.degα2| < 2π then α̂1 6= α̂2. �

Definition 4.1.3 We say that the boundary spirals to an indefinite extent near every point if
for any n ∈ N and any open neighbourhood U of any point z1 in the boundary, there is a point
z2 ∈ U ∩ ∂K and a curve α2 joining z0 to z2 such that | sp.degα2| > n. We say that the boundary
spirals to an indefinite extent in both directions near every point if there are two points z2, z3 ∈
U ∩ ∂K and two curves α2 and α3 joining z0 to z2 and z3 respectively such that sp.degα2 > n and
sp.degα3 < −n.

We extend the definition to infinite spiralling as follows (cf. [Pomm92]).

Definition 4.1.4 The boundary spirals infinitely at z1 if ImL(z) is unbounded in every neighbour-
hood of z1.

4.2 Cusp structure

The first stage in the proof of theorem 4.0.2 is to prove some facts about the local structure of cusp
points.

Definition 4.2.1 At a given cusp µ∞ with associated trace function Tr∞ chosen near µ∞ so that
Tr∞(µ∞) = 2, the sequence µ∗

n is defined as follows.

µ∗
n = µ∞ − π2

n2 Tr′∞(µ∞)

Any sequence µ̃n satisfying µ̃n = µ∗
n +O(n−3) is said to be an approximate cusp sequence.

In particular, we will prove:

Lemma 4.2.1 Let µn be the sequence of cusps which are neighbours of µ∞ as in section 3.3, then

the sequence µn is an approximate cusp sequence. That is, µn = µ∞ − π2

n2 Tr′∞(µ∞) +O(n−3).

The method of proving this comes from [Miyachi03]. We use:

Theorem 4.2.2 (Pivot Theorem, [Minsky99]) There exist positive constants ε, c1 such that,
if ρ : Γ → PSL2C is a marked punctured-torus group and `(α) ≤ ε then

2πi

λ(α)
≈ ν+(α) − ν−(α) + i

where “≈” denotes a bound c1 on hyperbolic distance in H2 between the left and right sides.
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Here α is an element of the fixed group Γ = 〈X,Y 〉, λ(g) is the complex length of the element
g ∈ PSL2C defined by the equation Tr(g) = 2 coshλ(g)/2, λ(α) = λ(ρ(α)), `(α) = Reλ(ρ(α))
and ν±(α) are the normalised end invariants of the two boundary components of the associated
hyperbolic 3-manifold. The normalisation is to choose an element T ∈ PSL2Z sending p/q to
∞ where α is the p/q-word in Γ, and to set ν±(α) = T (ν±) where ν± are the end invariants
or Teichmüller parameters of ρ. It is important to note that we think of `(α), ν±(α) and λ(α)
as functions on QF . In [Minsky99], Minsky is considering a fixed representation whereas we are
considering a varying representation. So for example, we define:

`(α) : QF → R; [ρ] → Reλ(ρ(α)).

We are considering a slice embedded in C via a holomorphic map f : C → Rp(Γ), so we can write
[ρ] = f(µ) as a holomorphic function of a complex parameter µ. The cusp [ρ∞] (corresponding to
pinching α) corresponds to the point µ∞. With this understood, we can write

Tr(ρ(α)) = 2 + (µ− µ∞)Tr′∞(µ∞) +O((µ− µ∞)2). (4.1)

So we can either think of Tr(ρ(α)) as itself a local coordinate, or we can use this Taylor expansion
to find the µ coordinate. In this section we have chosen the sign of the trace function near [ρ∞] so
that Tr(ρ∞(α)) = 2.

The method is as follows. We wish to estimate the value of µ giving rise to a representation ρ near
ρ∞ and in the boundary of the slice. Using the fact that Tr is holomorphic and the derivative is
nonzero at µ∞ (by proposition 3.4.1), it suffices to estimate Tr(ρ(α)). Using the formula Tr(g) =
2 coshλ(g)/2, it suffices to estimate λ(ρ(α)). We identify the normalised end invariants ν±(α), and
use the pivot theorem to estimate λ(ρ(α)) (subsequently, just written λ). This gives us an estimate
2πi/λ0 = ω0 of 2πi/λ = ω, which in turn gives us an estimate λ0 for λ.

Proof of lemma 4.2.1 The boundary of the Maskit or Bers slices is a homeomorphic image of R

or R̂, so that in a neighbourhood of the α cusp, `(α) ≤ ε (as ` is continuous) and the pivot theorem
applies. Writing Br(z) for the hyperbolic ball of radius r about the point z ∈ H, we have in this
case that:

ω = 2πi/λ ∈ Bc1
(ν+(α) − ν−(α) + i).

Define the point ω0 = ν+(α) − ν−(α) + i (in the upper half plane).

Let T ∈ PSL2Z be the normalisation so that T (p/q) = ∞. Writing T (p/q) = az+b
cz+d , we need to

find integers a, b, c, d such that T (p/q) = ∞ and ad − bc = 1. Trying c = q, d = −p we get that
T (p/q) = ∞ and we need a, b such that ap + bq = −1 which can be solved by Euclid’s algorithm.
This gives:

T (z) =
a

q
+

1

q2(z − p/q)
.

So in this notation, ω0 = T (ν+) − T (ν−) + i. This in turn gives ω0 = q−2(ν+ − p/q)−1 + c for a
constant c. An essential point here is that since ν− is fixed in the Bers and Maskit slices, T (ν−)
is just a constant. Only ν+ is varying. We define the symbol τ , which will be used again later, as
follows:

τ =
1

q2(ν+ − p/q)
.

With this symbol, we can write ω0 = τ + c. Write dH for the hyperbolic metric on the upper half
plane, and diH for the hyperbolic metric on the right hand half plane, then H → iH; z 7→ 2πi/z is
an isometry.

Now define λ0 by ω0 = 2πi/λ0. The pivot theorem says that dH(ω, ω0) ≤ c1, and so using the
isometry we get that diH(λ, λ0) ≤ c1. The hyperbolic ball of radius c1 centred at λ0 in iH has
Euclidean radius Reλ0. sinh c1, so we get the bound |λ − λ0| ≤ 2Reλ0. sinh c1 for the Euclidean
distance.

Now λ0 = 2πi/ω0 = 2πi/(τ + c) = 2πi/τ + O(τ−2). So Reλ0 = O(τ−2) and hence dE(λ, λ0) =
O(τ−2). Hence λ = 2πi/τ + O(τ−2). Using TrW = 2 coshλ(W )/2 and the Taylor series for cosh

we get that Tr ρα = 2 − π2

τ2 + O(τ−3). Equating this with equation 4.1, we get that µ − µ∞ =
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− π2

τ2 Tr′∞(µ∞) +O(τ−3) +O((µ− µ∞)2).

Explicitly, write Tr ρα = 2− π2

τ2 +Aτ , where |Aτ | ≤ A|τ |−3 (for some constant A). Using equation 4.1
we write Tr ρα = 2+(µ−µ∞)Tr′∞(µ∞)+Bµ where |Bµ| ≤ B|µ−µ∞|2 (some B). Equating we get

that µ− µ∞ = − π2

τ2 Tr′∞(µ∞) +Aτ/Tr′∞(µ∞)−Bµ/Tr′∞(µ∞). Write Cµ = µ− µ∞ +Bµ/Tr′∞(µ∞)

and Cτ = − π2

τ2 Tr′∞(µ∞) + Aτ/Tr′∞(µ∞). Clearly Cµ = Cτ , and Cτ = O(τ−2) so we can write

|Cτ | ≤ C|τ |−2 (for some C). It is also clear that for small |µ − µ∞| we have |Cµ| ≥ D|µ − µ∞|
(for some D). Putting these together we get that D|µ− µ∞| ≤ C|τ |−2. Squaring this, we get that
|Bµ| ≤ BC2|τ |−4/D2. So Aτ −Bµ = O(τ−3). In conclusion:

µ = µ∞ − π2

τ2 Tr′∞(µ∞)
+O(τ−3).

Finally, suppose p/q and r/s are Farey neighbours, and define rn = np+r
nq+s , r∞ = p/q. Then rn → r∞

and rn is a Farey neighbour of r∞. In fact, the rn are the fractions corresponding to the sequence
of neighbouring cusps visible in figures 3.9 and 4.3. If ν+ = rn then τ = ±(n+ s/q) depending on
whether ps− rq = ∓1. This gives us the estimate

µn = µ∞ − π2

n2 Tr′∞(µ∞)
+O(n−3),

as required. �

Figure 4.3: A close up view of a cusp with some neighbouring cusps in the Maskit slice. The thick
line is the boundary, the thinner lines are the pleating rays.

In fact, we can actually say, by looking at Miyachi’s argument in [Miyachi03] (in particular, the proof
of proposition 4.3), that we must have aτ−2 < Reλ < bτ−2 for 0 < a < b and Imλ = 2π/τ+O(τ−2).
Similarly, we can say that ReTr ρα = 2 − π2/τ2 +O(τ−3), and that there are constants 0 < a < b
such that aτ−3 < | Im Tr ρα| < bτ−3. This gives the cusps the local structure discussed in section 3.3.
This refinement will be important later on in section 4.4.

4.3 Trace derivatives

Suppose now that Γ = 〈X,Y 〉 is a fixed free group on two generators X and Y , and that Γ is
generated by A and B so that in the boundary of the slice the cusps corresponding to A and B are
neighbours. Let f : C → Rp(Γ) be a slice as in section 3.2, and let A and B be the p/q and r/s words
with respect to the generators X and Y . Assume that p/q < r/s. Defining rn = (np+ r)/(nq + s),
we get that the rn word is AnB. This is the sequence of neighbouring cusps between the A and B
cusps (see figure 4.4 and compare with figure 3.7). If we had that r/s < p/q then this sequence of
neighbouring cusps would be BAn and the conclusions would be mostly but not exactly the same,
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the points at which the conclusions are different will be highlighted. As before, Trn = TrAnB and
Tr∞ = TrA. Below, we will make a careful choice of the signs of these functions.

A B

ABA2B

A3B

A4B

Figure 4.4: Enumerating neighbouring cusps

Lemma 4.3.1 If a sequence of points µ̃n is an approximate cusp sequence, then

Tr′n(µ̃n) =
±n3iTr′∞(µ∞)

π2
+O(n2).

In particular, since the sequence of neighbouring cusp points µn is an approximate cusp sequence,
then by lemma 4.2.1 we have

Corollary 4.3.2 For the sequence of neighbouring cusps,

Tr′n(µn) =
±n3iTr′∞(µ∞)

π2
+O(n2).

In particular, the initial directions of two close Farey neighbouring pleating rays are approximately
perpendicular to one another.

µ∞

1/Tr′∞(µ∞)

℘∞

µn 1/Tr′n(µn)

℘n

Figure 4.5: Schematic view of perpendicularity phenomenon

Proof of lemma 4.3.1 The Markov identity states that for elements A,B ∈ SL2C we have that

(TrA)2 + (TrB)2 + (TrAB)2 = TrA · TrB · TrAB.

Choose TrA = Tr∞ near µ∞ so that Tr∞ µ∞ = 2. Now choose a sign for TrB , and this will
determine a sign choice for TrAB so that Markov’s identity holds in a neighbourhood of µ∞. We
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use the following formula, easily proved by induction for A,B ∈ SL2C,

TrAnB = aenλ/2 + be−nλ/2, (4.2)

where a and b are constants depending on A and B, and λ is the complex length of A defined
by TrA = 2 coshλ/2. (Note that if we were dealing with the case r/s < p/q this formula would
be the same because TrAnB = TrBAn.) If n = 0 we get a + b = TrB and if n = 1 we get
aeλ/2 + be−λ/2 = TrAB . Solving these gives

a =
TrAB e

λ/2 − TrB

eλ − 1
, b =

eλ TrB −eλ/2 TrAB

eλ − 1
. (4.3)

With the choice of functions TrA, TrB and TrAB already made, define a choice of sign for Trn

using the formula Trn = aenλ/2 + be−nλ/2. It may or may not be the case with this choice that
Trn(µn) = 2. The sign ambiguity this introduces will be resolved in lemma 4.4.1. Also note that
since TrAB , TrB and λ are holomorphic functions of µ, so are a and b.

Let µ̃n be an approximate cusp sequence, that is

µ̃n = µ∞ − π2

n2 Tr′∞(µ∞)
+O(n−3). (4.4)

We know that
Tr∞(µ) = 2 + (µ− µ∞)T +O(µ− µ∞)2 (4.5)

where T is defined as Tr′∞(µ∞) ∈ C. Thinking of λ as a function in µ, so that

λ(µ) = 2 cosh−1 Tr∞(µ)/2, (4.6)

we have
λ(µ) = 2

√

(µ− µ∞)T +O(µ− µ∞)3/2. (4.7)

The square roots in the expression above are not a problem. We will only differentiate λ at µ̃n 6=
µ∞ and the sign ambiguity that is introduced by the use of the square root will be resolved in
lemma 4.4.1.

We start by differentiating equation 4.6 and substituting equation 4.5 to get

λ′(µ) =
(Tr∞)′(µ)

√

T (µ− µ∞) +O(µ− µ∞)2
. (4.8)

Substituting equation 4.4 for µ̃n in equation 4.7 we get

λ(µ̃n) = ±2iπ

n
+O(n−3/2). (4.9)

Similarly we get

λ′(µ̃n) = ∓ inTn

π
+O(1) (4.10)

where Tn = Tr′∞(µ̃n). Since Tr∞ is holomorphic at µ∞ and µ̃n → µ∞ we have that Tn → T . In
fact, Tn = T +O(µ̃n − µ∞) = T +O(n−2). Finally, we differentiate equation 4.2 to get

Tr′n = a′enλ/2 + b′e−nλ/2 + anλ′/2 · enλ/2 − bnλ′/2 · e−nλ/2. (4.11)

Evaluating this at µ̃n and using all of the facts above gives, after some simplification, that

Tr′n(µ̃n) = ± (TrAB −TrB)n3T

2π2
+O(n2). (4.12)

We now apply Markov’s identity. Since TrA(µ̃n) = Tr∞(µ̃n) = 2 + O(n−2) we get 4 + (TrB)2 +
(TrAB)2 = 2TrB ·TrAB +O(n−2) which can be factorised to give (TrB −TrAB)2 = −4 +O(n−2) or
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TrB −TrAB = ±2i+O(1/n). Substituting this in equation 4.12 gives us the required result. �

4.4 Curve construction

At this point, we almost have theorem 4.0.2. It would seem as if we could take a cusp, find a close
neighbouring cusp approximately perpendicular to it, do the same to this cusp and repeat again
and again, each time rotating our view by 90 degrees until we get as much spiralling as we like.
There are two problems. First of all, there is a sign ambiguity in Tr′n(µ̃n) in lemma 4.3.1. This
might mean that our choice of neighbours might first increase the angle by 90 degrees, and then
decrease it by 90 degrees, and so on so that we end up with no spiralling at all. The other possibility
is illustrated in figure 4.6. In this case, we would actually rotate the angle by -270 degrees rather
than +90 degrees.

Inside

Outside

℘ ℘n

A AnB

Figure 4.6: A logically possible monstrosity

In [Wright88], David Wright conjectured that the straight line segment between any two neighbour-
ing cusps in the Maskit slice is entirely contained within the slice. This is the conjecture referred to
at the beginning of section 3.3. This conjecture would rule out the possibility of something like fig-
ure 4.6. Below, we prove something almost as good as Wright’s conjecture, at least for the purposes
of this paper, that there is an arc between two close neighbouring cusps consisting of an almost
straight segment of length O(n−3) in the direction of the AnB cusp followed by an almost straight
segment of length O(n−2) in the direction of the A cusp. This is also good enough to rule out the
possibility of figure 4.6.

The construction of this arc is roughly as follows, illustrated in figure 4.7 (the O(−) notation
refers to the length of the two components of the arc). Near a close neighbouring cusp, the trace
derivative satisfies the perpendicularity equation of lemma 4.3.1. Suppose Trn(µn) = 2, and the
pleating ray is ℘n(t) parameterised so that Trn(℘n(t)) = t, then the direction of the pleating ray
at ℘n(t) is 1/Tr′n(℘n(t)) by a simple application of the chain rule. So, at those points ℘n(t) within
some small neighbourhood of the AnB-cusp, the direction of the pleating ray will be approximately
perpendicular to the direction of the pleating ray of the main cusp. It turns out that the size of the
neighbourhood of the AnB-cusp in which this is true is large enough that the pleating ray reaches
one of the bounding (2, 3)-cusps of the main cusp. The arc is then the initial section of the pleating
ray ℘n to the point where it touches one of the bounding (2, 3)-cusps, followed by the segment of
the bounding (2, 3)-cusp from the intersection point to the main cusp. More explicitly, let ψ+ be
the outer bounding (2, 3)-cusp curve. The arc we construct consists of the initial segment of ℘n

(from ℘n(2) to ℘n(t0) where ℘n(t0) is the first point of intersection of ℘n and ψ+), followed by the
segment of ψ+ from this intersection point to the main cusp.

Lemma 4.3.1 says that for any approximate cusp sequence µ̃n, we get an equation for Tr′n(µ̃n)
depending only on n with an O(n2) term. Here we are not assuming that µ̃n are the neighbouring
cusps. Instead, suppose that µn is the sequence of cusp neighbours of µ∞ and µ̃n is any sequence
with µ̃n = µn +O(n−3) then µ̃n will be an approximate cusp sequence and lemma 4.3.1 will apply.
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℘n

O(n−2)

O(n−3)
ψ+ψ−

Figure 4.7: Constructing an almost straight arc between two neighbouring cusps

For ease of discussion, rotate and translate the picture so that the main cusp direction is straight
upwards and the main cusp is at 0. Without loss of generality, we consider only the right hand side
of the picture. Figure 4.8 shows this. We write φ(τ) for the parameterisation of the boundary and
ψ+(τ) for the outer bounding (2, 3)-cusp. Here τ ∈ R and φ(τ) is the point on the boundary such
that ν+ = p/q + q2τ (see the definition of τ in the proof of lemma 4.2.1, section 4.2). Choosing the
constants appropriately, we say that ψ+(τ) = −aiτ−2 + bτ−3 (see ψ+ marked on figure 4.7). It is
easy to see from the fact that we have an O(τ−3) estimate of φ(τ) that the horizontal distance from
φ(τ) to the outer bounding curve ψ+ is O(τ−3). Say this distance is less than Wτ−3.

−τ2

τ3

O(τ3)

φ(τ)

Figure 4.8: Further local structure of the boundary near a cusp

Before proceeding with the construction of the arc, we slightly improve lemma 4.3.1. The proof of
this lemma gives the idea of the construction of the arc.

Lemma 4.4.1 Let µ̃n be an approximate cusp sequence, and let Trn(µn) = 2εn (so εn = ±1). Then

Tr′n(µ̃n) =
εnn

3iTr′∞(µ∞)

π2
+O(n2).

Notice that if we had assumed that r/s < p/q then we would need to prove Tr′n(µ̃n) =
−εnn3i Tr′∞(µ∞)

π2 +
O(n2). The point is that if the cusp neighbours are on the right hand side of the main cusp then
they point out one way, and if they are on the left they point out the other way (either way, they
point away from the axis of the main cusp).
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Cn℘n

ψ+

ψ−

µn

Rn

Sn

Figure 4.9: Impossible consequence of δ = −1 in equation 4.13

Proof Without loss of generality, suppose εn = 1. In this case the initial direction of the pleating
ray is 1/Tr′n(µn). If εn = −1 then it would be −1/Tr′n(µn). Let

Tr′n(µ̃n) =
δn3iTr′∞(µ∞)

π2
+O(n2) (4.13)

for δ = ±1. Suppose we have that δ = −1. This leads to the contradiction, illustrated in figure 4.9,
that the pleating ray leaves the slice.

We can certainly say that | Imφ(τ)| ≤ Wτ−3 for some constant W . Define Cτ to be the disc of
radius

√
2Wτ−3 about φ(τ) so that the inscribed square Sτ intersects the imaginary axis. Now, for

any point µ̃n ∈ Cn we have that µ̃n = µn +O(n−3) because the radius of Cn is O(n−3), and so any
sequence of µ̃n ∈ Cn is an approximate cusp sequence. Here Cn is defined to be Cτ for the value
of τ corresponding to n, the precise value is τ = n + s/q (see the definition of τ in the proof of
lemma 4.2.1). Lemma 4.3.1 then says that equation 4.13 will hold for any µ̃n ∈ Cn.

Choose N large enough so that for n ≥ N we have that the angle from the horizontal of ℘′
n =

1/Tr′n(µ̃n) is less than π/4. Let Rn be the conical region of angle π/4 with the horizontal, centered
at the AnB cusp µn, expanding in the direction of the negative horizontal axis. Now, ℘′

n(t) =
1/Tr′n(℘n(t)). Since 1/Tr′n(℘n(s)) has angle less than π/4 to the horizontal as long as ℘n(s) ∈ Rn,
the intersection of ℘n with Cn is contained within Rn (if ℘n left the region Rn it would have a
tangent with angle greater than π/4 with the horizontal at that point). In fact, it is possible that ℘n

could leave the region Rn and subsequently come back, but we need only consider the initial segment
of ℘n. More precisely then, the connected component of the intersection of ℘n with Cn containing
the cusp µn is contained within Rn. In particular, since Sn intersects the negative imaginary axis
so must ℘n (otherwise it would remain within a bounded region of the cusp). However, points on
the negative imaginary axis are never inside the slice, whereas points on ℘n are always within the
slice. This contradiction tells us that δ = 1 in equation 4.13. �

The construction of the curve from the AnB cusp to the main cusp works in much the same way.
However, rather than joining the AnB cusp to the imaginary axis via the initial segment of the
pleating ray, we join it to the outer bounding (2, 3)-cusp via the pleating ray, and from there to the
main cusp via the outer bounding (2, 3)-cusp. Consider figure 4.10. The conical region Rτ shown
shaded is defined to be centred at φ(τ) and bounded by two lines with gradient ±m1 where m1 is
any positive number. Rτ is expanding in the direction of the positive horizontal axis. We want to
show that:

Lemma 4.4.2 For τ large enough, and for some constant D, the conical region Rτ always intersects
the outer bounding curve ψ+ within a distance Dτ−3 of φ(τ).
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ψ+

φ(τ)

w1

w2

h1

h2

Rτ

L

P1

P2

P3

Figure 4.10: Convexity argument

Proof We know that the outer bounding curve is ψ+(τ) = −aiτ−2 + bτ−3 (for some a, b ∈ R). It
is important to note here that the parameterisations of ψ+(τ) and φ(τ) are both such that as τ
increases to ∞, the point gets closer and closer to µ∞. In figure 4.10 this is illustrated by arrows on
the ψ+ curve. In particular, keep this in mind when thinking about the gradients of tangents to this
curve. Differentiating ψ+(τ), we get that ψ+(τ)′ = 2aiτ−3 − 3bτ−4. This gives the gradient from
the horizontal of the tangent line a value m(τ) = −2aτ/3b. Since this tends to −∞ as τ increases,
we can say that for τ > T1 we have |m(τ)| > m2 for a constant m2 which we will choose to be
anything larger than m1 (we could choose mi = i for instance).

On figure 4.10 the point labelled P1 is the intersection of ψ+ with the horizontal line through φ(τ).
The point labelled P2 is the point on the intersection of the vertical line through P1 and the upper
bounding line of the cone. The point labelled P3 is the intersection of the line L, which is from P1

with gradient −m2, with the lower bounding line of the cone. We define w1 to be the distance from
φ(τ) to P1, h1 to be the distance from P1 to P2, w2 to be the distance from φ(τ) to the vertical line
through P3, and h2 to be the distance from P3 to the horizontal line through φ(τ).

We get that h1/w1 = h2/w2 = m1 and h2/(w2 − w1) = m2. This gives h1 = m1w ≤ m1Wτ−3 and
h2 = w/(1/m1 − 1/m2) ≤ Wτ−3/(1/m1 − 1/m2). We want to define a constant T2 such that if
τ > T2 and for some other value, say τ̃ , we have that Imψ+(τ̃) < Imφ(τ) − h2 (that is, ψ+(τ̃) is
below a horizontal line through the point P1 in figure 4.10) then we have that τ̃ > T1. This can
easily be arranged using the formula for ψ+ and the estimate for Imφ(τ). Now for any τ > T2,
because |m(τ̃)| > m2 whenever Imψ+(τ̃) > Imφ(τ) − h2, the upper (resp. lower) bounding line of
the cone intersects ψ+ within a distance

√

w2
1 + h2

1 (resp.
√

w2
2 + h2

2), the distance from φ(τ) to P2

(resp. P3). This gives us the required constant D. �

Now we proceed to construct a curve as in the proof of lemma 4.4.1. For all sequences of points
µ̃n ∈ Cn (the circle centred around the nth neighbouring cusp) we have that µ̃n is an approximate
cusp sequence. Choose N large enough that the absolute value of the gradient of a line in the
direction 1/Tr′n is smaller than m1 for n ≥ N . Points on ℘n within a distance D/n3 of the nth cusp
must be within the conical region Rn which intersects the outer bounding (2, 3)-cusp ψ+, so the
pleating ray must also intersect ψ+. (As before, we are only interested in the connected component
of ℘n intersected with Cn containing µn, this initial segment of ℘n must be contained in Rn.)
This gives us the curve we wanted, just connect the initial segment of ℘n from the nth cusp to its
intersection with ψ+ to the segment of ψ+ from this intersection point to the main cusp.
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4.5 Main Theorems

Proof of theorem 4.0.2 Given a point on the boundary, connect the base point z0 to any very
close cusp z1 by a curve α1 as in the definition of spiralling in section 4.1. Let z2 be a very close
neighbouring cusp of z1 on the right hand side. Construct the curve α2 by joining to the end of α1

the two segments described above (the initial segment of the pleating ray coming out of z2 followed
by the outer bounding (2, 3)-cusp of the z1 cusp). Let L1 and L2 be the branches of the log function
L, in the definitions in section 4.1, corresponding to z1 and z2. Now L1(z)−L2(z) = log z−z1

z−z2
. So, if

we look at only those points on α1 and α2 which don’t get too close to z1 or z2 (say, exclude a small
η-neighbourhood of z1 so that |z2 − z1| < η/κ for some large κ), we can make L1(α1(t))−L2(α1(t))
as small as we like by making η small and κ large. This is because | z−z1

z−z2
− 1| = | z2−z1

z−z2
| ≤ 1/κ,

log(1) = 0 and log is continuous at 1. Note that since we are choosing an arbitrarily close neighbour
z2 of z1 we can ensure that z2 is in the η-neighbourhood of z1 that we choose. It will be important
in the proof of theorem 4.0.3 that there are a countably infinite number of choices for the point z2,
any of the countably infinitely many cusp neighbours within the η-neighbourhood of z1 will do.

Suppose then that except in this neighbourhood of z1 we have that |L1(α1(t))− L2(α1(t))| < δ for
some small δ, say δ = π/24. Now, we know what α1 and α2 look like in this small neighbourhood
of z1, and we can easily see that sp.degα2 ≤ sp.degα1 − π/3 + 2δ. This gives us that sp.degα2 ≤
sp.degα1 − π/4. Repeating this procedure, we get that sp.degαn ≤ sp.degα1 − nπ/4 and in
particular that sp.degαn → −∞ as n→ ∞.

So the boundary spirals to an indefinite extent near every point. By choosing neighbouring cusps
on the left hand side instead of the right, we can find curves spiralling arbitrarily clockwise instead
of counterclockwise, and by suitably alternating our choices we can keep the degree of spiralling
bounded. �

Proof of theorem 4.0.3 Let z∞ = lim zn where the zn are the series of cusp points in the previous
proof (in fact, we will add an additional requirement on zn later in this proof). Writing Ln(z) as
before, and L∞(z) = log(z − z∞) defined in the same way, we get L∞(z)−Ln(z) = log(1 +wn(z))
where wn(z) = (zn − z∞)/(z − zn). If we can find a sequence ζn such that ζn → z∞, ImLn(ζn) is
unbounded and log(1 +wn(ζn)) is bounded then ImL∞(ζn) will be unbounded, which would prove
that z∞ was a point of infinite spiralling on the boundary. To show that log(1+wn(ζn)) is bounded
it is enough to find a sequence such that |wn(ζn)| < 1/2, or equivalently that |ζn−zn| > 2|zn−z∞|.
For |z − zn| ≤ η, for some η > 0 depending on n, we know that ImLn(z) > a + bn for some
constants a, b > 0. (This just follows from the previous proof.) Now, if |zn − z∞| < η/2 then we can
choose a point ζn a distance η from zn, and this sequence satisfies |wn(ζn)| < 1/2. The additional
requirement on zn mentioned at the start of this proof is that |zn−z∞| < η/2 which can be ensured
by always choosing the next neighbouring cusp in the sequence (zn) sufficiently close to the previous
one.

The set of points where the spiralling is infinite is clearly dense (this procedure can be started as
close to any point as you like). Moreover, the number of limit points you can get to is uncountable.
For any given choice of the first m points in the sequence (zn), there is a countably infinite number
of choices for the next point zm+1 (this is the comment in the proof of theorem 4.0.2 that says there
are a countably infinite number of choices for what was called z2 in that proof). Here we will assume
that the point z1 is common to all such sequences. Even with this restriction we get an uncountable
number of limit points. Each choice of sequence (zn) gives rise to a unique limit z∞. This is because
the continued fraction expansion of an irrational is unique. Given a sequence (zn) define the sequence
(rn) to be the rational numbers associated to the cusps (so that zn = µ(rn)). The sequence (rn)
will be the sequence of continued fraction partial approximates to β = lim rn = µ−1(z∞) (because
zn+1 is a neighbour of zn). Since each irrational β has a unique continued fraction approximation,
different sequences will give rise to different limits. Let S be the set of limits z∞ coming about
in this way, we have shown that there is a bijection between S and the set of countably infinite
sequences of natural numbers NN. Explicitly, this bijection is as follows. Given a finite sequence
(zn)m

n=1, there is a countably infinite set Z((zn)m
n=1) of choices for the next point zn+1. For each

such sequence, choose a bijection π((zn)m
n=1) : Z((zn)m

n=1) → N. Given a sequence (an) ∈ NN we
define a sequence zn inductively as follows. The first point z1 is always the same. Given the first
m points, (zn)m

n=1 we define zn+1 = π((zn)m
n=1)

−1(an). The bijection between NN and S sends a
sequence (an) ∈ NN to the limit z∞ of this sequence. This is surjective by definitive, and injective
because such sequences give rise to unique limits. Since NN is uncountable, so is S. The character
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of the set of points about which this result proves there is infinite spiralling, is somewhat akin to a
countable union of Cantor sets. �
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Chapter 5

Conjectural picture of the

boundary

We have proved that the boundaries of the Maskit and Bers slices spiral infinitely at an uncount-
able, dense set. However, there is very good numerical evidence to suggest that in fact they spiral
infinitely at almost every point in their boundaries. We present an argument for this based on
two unproven conjectures (sections 5.3 and 5.4). Our argument relies on some facts from complex
analysis (section 5.1) and number theory (section 5.2).

Throughout this chapter and the next, we refer to C++ and Mathematica files and functions. These
are included on CD attached to this thesis. They are also included on the author’s web page, which
at the time of writing is maths.thesamovar.net.

5.1 Twisting

Let D ⊆ C be the unit disc in C and f : D → G ⊆ C conformal. We define two sorts of behaviour
at the boundary.

A Stolz angle at ζ ∈ ∂D is any set of points ∆ ⊆ D a bounded hyperbolic distance from the radius
[0, ζ]. We say f has the angular limit a ∈ Ĉ at ζ ∈ ∂D if

lim
z→ζ,z∈∆

f(z) = a (5.1)

for every Stolz angle ∆ at ζ. We will write f(ζ) for the angular limit a. We say f is conformal at
ζ ∈ ∂D if

f ′(ζ) = lim
z→ζ,z∈∆

f(z) − f(ζ)

z − ζ
= lim

z→ζ,z∈∆
f ′(z) 6= 0,∞ (5.2)

for every Stolz angle ∆ at ζ. We say that f is twisting at ζ if the angular limit f(ζ) 6= ∞ exists and

lim inf
z→ζ,z∈Γ

arg(f(z) − f(ζ)) = −∞, lim sup
z→ζ,z∈Γ

arg(f(z) − f(ζ)) = +∞

for every curve Γ ⊆ D ending at ζ. We say that f(ζ) is sectorially accessible from G if G contains
an open triangle with vertex f(ζ). We define Sect(f) to be the set of all ζ ∈ ∂D such that f(ζ) is
sectorially accessible. Clearly if f(ζ) is sectorially accessible it cannot be twisting. We write λ for
linear measure (one dimensional Lebesgue measure) on subsets of C.

Essentially (that is, up to sets of measure 0) we think of sectorially accessible and conformal as
the same, and the opposite of twisting. This is the intuitive content of theorem 5.1.1 below. See
[McMillan69] and chapter 6 of [Pomm92].

Theorem 5.1.1 (McMillan Twist Theorem) At almost all ζ ∈ ∂D the map f is either confor-
mal or twisting.
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The twist theorem implies that Sect(f) differs from the set of conformal boundary points by a set
of measure 0.

5.2 Continued fractions

We need some results about continued fractions. These follow quite simply by applying the ergodic
theorem to the Gauss measure and the continued fraction transformation.

Let (Ω,F ,P) be a probability space and T : Ω → Ω a measure preserving transformation. That is,
F is a σ-algebra of subsets of Ω, P is a probability measure on F , and T is a measurable function
satisfying P(T−1A) = P(A) for all A ∈ F . A set A ∈ F is invariant if T−1A = A. A measurable
function g on Ω is said to be invariant if g(Tω) = g(ω) a.e. The transformation T is ergodic if every
invariant set has measure 0 or 1. If f : Ω → R is integrable we define the expectation of f to be
E[f ] =

∫

f dP.

Theorem 5.2.1 (The Ergodic Theorem) If f is integrable, then there exists an integrable, in-

variant function f̂ such that E[f̂ ] = E[f ] and

lim
n→∞

1

n

n−1
∑

k=0

f(T kω) = f̂(ω) a.e.

If T is ergodic then f̂(ω) = E[f ] a.e.

For a proof of the ergodic theorem, see [Bill65]. As a simple application we get the following.

Corollary 5.2.2 Let T be ergodic and f = IA the indicator function of A. Then

lim
n→∞

1

n

n−1
∑

k=0

IA(T kω) = P(A) a.e.

We apply this to prove several results about continued fractions. We consider the unit interval [0, 1]
with the Gauss measure defined by

P(A) =
1

log 2

∫

A

dx

1 + x
.

This measure is absolutely continuous with respect to Lebesgue measure so the terms integrable
and a.e. apply equally to the Gauss measure or Lebesgue measure. We define the function

T (ω) =

{

{1/ω} if ω 6= 0,

0 if ω = 0.

Here {x} means the fractional part of x, and [x] means the integer part. This function T is ergodic
with respect to the Gauss measure, see [Bill65]. We also define the partial quotients

a(ω) =

{

[1/ω] if ω 6= 0,

∞ if ω = 0

and
an(ω) = a(Tn−1ω).

We use the notation [a1 a2 a3 ...] to mean the continued fraction

1

a1 + 1
a2+

1
a3+···

.

We define pn(ω) and qn(ω) to be the numerator and denominator of [a1 . . . an]. We get the following
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relations for n ≥ 1,

pn+1 = an+1pn + pn−1

qn+1 = an+1qn + qn−1

(5.3)

If we specify p−1/q−1 = 1/0 and p0/q0 = 0/1 these relations can be used to define pn and qn. From
this, it is straightforward to prove (see [Bill65] chapter 1, section 4) that

1

qn(qn + qn+1)
≤
∣

∣

∣

∣

ω − pn

qn

∣

∣

∣

∣

≤ 1

qnqn+1
.

From this, it is easy to prove the following result, which we will use later,

1

(an+2 + 1)(an+1 + 1) + 1
≤
∣

∣

∣

∣

ω − pn+1

qn+1

∣

∣

∣

∣

/

∣

∣

∣

∣

ω − pn

qn

∣

∣

∣

∣

≤ an+1 + 2

a2
n+1an+2

. (5.4)

Let f be the indicator of the set {ω : a1(ω) = k}. Applying corollary 5.2.2 we see that the asymptotic
relative frequency of k among the partial quotients is

1

log 2

∫ 1/k

1/(k+1)

dx

1 + x
=

1

log 2
log

(k + 1)2

k(k + 2)
.

In particular, since the right hand side is nonzero for all k, k appears infinitely often in the continued
fraction expansion of almost all ω. This also shows that the partial quotients are unbounded for
almost all ω.

By a similar method, we can find the asymptotic relative frequency of the sequence k1, k2, . . . , km.
We let f be the indicator of the set

A(k1, . . . , km) = {ω : a1(ω) = k1, . . . , am(ω) = km},

and apply corollary 5.2.2 to get the asymptotic relative frequency of the sequence to be

P(A(k1, . . . , km)) =
1

log 2

∫

A(k1,...,km)

dx

1 + x
.

In fact, all we need here is that this probability and asymptotic relative frequency is nonzero.

Lemma 5.2.3 Every sequence (k1, . . . , km) occurs infinitely often in the continued fraction expan-
sion of almost all ω.

The following results are also proved in [Bill65] by relatively simple applications of the ergodic
theorem.

lim
n→∞

1

n
log qn(ω) =

π2

12 log 2
a.e.

Roughly, we think of this as saying that for large n and almost all ω,

qn(ω) ∼ βn,

where β = e
π2

12 log 2 ≈ 3.28. It also follows that

lim
n→∞

1

n
log

∣

∣

∣

∣

ω − pn(ω)

qn(ω)

∣

∣

∣

∣

= − π2

6 log 2
a.e.

Again, we think of this as saying
∣

∣

∣

∣

ω − pn(ω)

qn(ω)

∣

∣

∣

∣

∼ γn,
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where γ = e−
π2

6 log 2 ≈ 0.09.

We also have results on Diophantine approximation. It is possible to prove the following directly.

Lemma 5.2.4 For all irrational ω ∈ [0, 1], we have

∣

∣

∣

∣

ω − pn

qn

∣

∣

∣

∣

<
1

q2n
.

We do not use the rest of these results directly, but they are important results in the theory of
continued fractions and Diophantine approximation which help to give a better intuitive picture of
what is going on.

Theorem 5.2.5 The event an(ω) > αn occurs infinitely often with probability 0 if
∑

1/αn con-
verges and probability 1 if it diverges.

Theorem 5.2.6 Let f(q) : N → R+.

1. If qf(q) is nonincreasing and
∑

f(q) = ∞ then for almost all ω we have

∣

∣

∣

∣

ω − p

q

∣

∣

∣

∣

<
f(q)

q

for infinitely many p and q.

2. If
∑

f(q) <∞ then for almost all ω the inequality holds for only finitely many p and q.

In particular, setting f(q) = 1
q log q log log q and f(q) = 1

q(log q)2 , whose sums diverge and converge

respectively, we have the following.

Corollary 5.2.7 For almost all ω, for infinitely many p and q we have

1

q2(log q)2
<

∣

∣

∣

∣

ω − p

q

∣

∣

∣

∣

<
1

q2 log q log log q
.

To show these sums converge or diverge we apply Cauchy’s integral test which states in this case that
∑∞

f(q) converges or diverges if
∫∞

f(q)dq converges or diverges. The sum of 1/q log q diverges
because the integral of 1/q log q is log log q which tends to infinity as q → ∞. Substituting u = log q
we see that the integral of 1/q log q log log q is the integral of 1/u log u and so also diverges. Similarly,
the sum of 1/q(log q)2 converges because the integral is −1/ log q which tends to 0 as q → ∞.

For more details on continued fractions, see [Bill65] and [HarWri79].

5.3 Uniform local coordinates

Our argument in section 5.5.2 requires a somewhat technical result. Consider the following situation.
Take the p/q-cusp in the Maskit slice, and let µ be the usual coordinates, and t = Trp/q(µ) be the
trace coordinates in a small neighbourhood. You can see in figure 5.1 that the linear part of Trp/q(µ)
is quite a good estimate of Trp/q(µ) in a small region surrounding the cusp µp/q. We have good
numerical evidence to support the following conjecture which is an attempt to capture this.

Conjecture 5.3.1 (Uniform Local Coordinates) There exists ε > 0 such that for all p/q, for
the region |t− 2| ≤ ε, we have

1

2

|t− 2|
|Tr′p/q(µp/q)|

≤ |µ− µp/q| ≤
3

2

|t− 2|
|Tr′p/q(µp/q)|

.
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Figure 5.1: Trace coordinates. The figure on the left hand side is a small region in the Maskit slice
surrounding the 9/17-cusp. The solid line on the figure on the right hand side is the same region in
the Tr9/17 trace coordinates. The dashed line is the same region if you only apply the linear part
of the function Tr9/17. The fractions on both figures correspond to the cusps.

The purpose of this conjecture will become clear in section 5.5.2. However, roughly speaking it says
that if you can estimate |Tr′p/q(µp/q)| and Trp/q(µ) then you can estimate |µ−µp/q|. Not having this
conjecture or something similar is a surprisingly large barrier to proving results about the Maskit
slice. For example, lemma 4.2.1 tells us that the sequence of neighbouring cusps µn → µ∞ = µp/q

is an approximate cusp sequence, that is it satisfies

µn = µ∞ − π2

n2 Tr′∞(µ∞)
+O(n−3).

The problem is that the implicit constant in the O(n−3) term depends on p/q in a complicated way.
However, if we write tn = Trp/q(µn) then we know that

tn = 2 − π2

n2
+O(n−3),

where the O(n−3) term depends on universal constants independent of p/q. If the conjecture is
correct then we can say that

|µn − µ∞| = Θ

(

π2

n2|Tr′∞(µ∞)|

)

,

where the implicit constants are universal (don’t depend on p/q). Note that the Θ(−) notation here
is similar to the O(−) notation, and is defined in appendix A. Roughly speaking f = O(g) means
that f is of the order of g or smaller, whilst f = Θ(g) means that f is of the same order as g.

The numerical evidence for this conjecture is as follows. Assume for the moment that Trp/q is
invertible in the region we are considering. Let

Ep/q(t) = µ− µp/q −
t− 2

Tr′p/q(µp/q)
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be the error term (consisting of the second and higher order terms in the series expansion of Tr−1
p/q).

We want to show that

|Ep/q(t)| ≤
|t− 2|

2|Tr′p/q(µp/q)|
.

So write
Tr′p/q(µp/q)Ep/q(t)

t− 2
=

∞
∑

n=2

an(t− 2)n−1.

Now if |t − 2| ≤ 1 then this sum will be less than
∑∞

n=2 |an|. So if this sum is always less than
1/2 the conjecture follows. Numerical evidence suggests that this is the case. This evidence only
includes cases up to q ≤ 20 because of numerical stability problems with Mathematica.

An alternative way of showing numerically that Ep/q(t) is bounded in this way is to use Cauchy’s
theorem

f (k)(z) =
k!

2πi

∫

C

f(ζ)

(ζ − z)k+1
dζ.

Suppose C is a circle about z of radius ε and |f(z)| ≤ A on C, then

∣

∣

∣

∣

f (k)(z)

k!

∣

∣

∣

∣

≤ A

εk
.

Now suppose that f in the above is defined by f(z) = Tr−1
p/q(t) − µp/q and z = t − 2. If we could

find a constant B not depending on p/q such that on C we have |f(z)| ≤ B/|Tr′p/q(µp/q)| then the

conjecture follows. For k ≥ 2, the quantity f (k)(0)/k! is the kth coefficient of the Taylor series of
Ep/q(t). It follows that when |t− 2| ≤ ηε

∣

∣

∣

∣

∣

Tr′p/q(µp/q)Ep/q(t)

t− 2

∣

∣

∣

∣

∣

≤
∞
∑

k=2

A|Tr′p/q(µp/q)|ηk−1εk−1

εk
=

Bη

ε(1 − η)
.

By choosing η sufficiently small we can ensure that this is always less than 1/2.

The numerical evidence for the existence of this universal bound is very good indeed. It is difficult to
compute Tr−1

p/q so we take the following approach (see figure 5.2). For every p/q let the circleD be the

circle of radius 1/|Tr′p/q(µp/q)| around µp/q. It turns out that for all q ≤ 1000 the image under Trp/q

of D is always contained in an annulus which seems to have universal inner and outer radii (about
0.87 and 1.15 respectively). This analysis is carried out by the C++ function view::imagecircleanalysis
in the file maskitalgorithms.cpp. Since f ′(z) = (Tr−1

p/q)
′(t) = 1/Tr′p/q(µ), f ′(z) 6= 0 and so f cannot

have a local maximum within C, the circle of radius 0.87 about t = 2. This implies the existence of
a universal bound of the required type (by the maximum modulus principle).

Finally, we note that numerical evidence suggests that on the disc E of radius 1/|Tr′p/q(µp/q)| about
µp/q, the function Trp/q is invertible. Firstly, a small number of sample calculations suggest that the
image of E is always simply connected. We provide no numerical evidence in support of this, other
than to say that in a small number of test cases it seemed to be the case, and it is very implausible
that it is not the case. However, more extensive computations (for all q ≤ 80) suggest strongly that
on E, Tr′p/q(µ) 6= 0. By analytic continuation, this would imply that Trp/q is invertible on E. See
the Mathematica notebook invertibility-regions.nb for these calculations.

In conclusion, the evidence for this conjecture is far from complete (in particular, because the
argument above relies on the invertibility of Trp/q in the required region, for which the evidence is
relatively weak), but it is nonetheless strong enough to make it likely to be true.

Probably the best method to try to prove this conjecture would be to first prove some state-
ment about the trace functions for all p/q using induction on the level of p/q and the formula
TrW(p+r)/(q+s) = TrWp/q · TrWr/s − TrW(r−p)/(s−q) (see section 6.2.1). The level of p/q is the
number of steps needed to get to p/q using Farey addition (see section 6.2.1). The second step
would be to derive the conjecture from this statement about the trace functions for all p/q. The
proof would probably be relatively straightforward, the difficult thing is working out precisely what
statement to prove using induction.
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Figure 5.2: Showing numerically that Trp/q is approximately linear

5.4 Trace derivatives

The argument in section 5.5.2 also requires one more result, conjecture 5.4.3 below. However, this
section also allows us to make a conjecture about the Hausdorff dimension of the Maskit slice in
section 5.6.

Define Tp/q = |Tr′p/q(µp/q)|. Given ω ∈ [0, 1] and pn/qn → ω the partial approximants, define
Tn = Tn(ω) = Tpn/qn

. We make several conjectures about the statistical and limiting properties of
Tp/q on the basis of numerical evidence. See the Mathematica notebook trace-derivatives.nb.

We first argue that for almost all ω, for large n, log Tn/ log qn ∈ [1.69846, 2.35407]. First, we note that
there is strong statistical evidence to suggest that for all ω and for all n, Tn/Tn−1 ∈ [T1/an

, T1/an+1].
The following table gives the minimum and maximum values of Tn/Tn−1 for 30000 samples subject
to the restriction that qn ≤ 2000.

an(ω) minTn/Tn−1 maxTn/Tn−1 T1/an
T1/an+1 Samples

1 1. 3.4641 1. 3.4641 30718
2 3.4641 6.97359 3.4641 6.97359 12174
3 6.97359 11.875 6.97359 11.875 6666
4 11.875 18.9384 11.875 18.9384 4084
5 18.9384 28.9523 18.9384 28.9523 2872
6 28.9523 42.6073 28.9523 42.6073 2098
7 42.6073 60.5356 42.6073 60.5356 1605
8 60.5356 83.3487 60.5356 83.3487 1239
9 83.3487 111.652 83.3487 111.652 1025
10 111.652 146.05 111.652 146.05 778
11 146.05 187.148 146.05 187.148 713
12 187.148 235.55 187.148 235.55 549
13 235.55 291.864 235.55 291.864 508
14 291.864 356.695 291.864 356.695 459
15 356.695 430.651 356.695 430.651 382
16 430.651 514.337 430.651 514.337 294
17 514.337 608.363 514.337 608.363 320
18 608.363 713.334 608.363 713.334 288
19 713.334 829.858 713.334 829.858 232
20 829.858 958.543 829.858 958.543 225
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As noted, this suggests the following conjecture.

Conjecture 5.4.1 For all ω, n, we have that |Tr′n |/|Tr′n−1 | ∈ [Tr′1/an
,Tr′1/an+1 |].

Now, the event an(ω) = m occurs with relative frequency

pm =
1

log 2
log

(m+ 1)2

m(m+ 2)
.

Consider the first n partial quotients of ω. In the limit, npm of these will be m. Therefore, very
roughly speaking, for almost all ω, in the limit we will have

∞
∏

m=1

Tnpm

1/m ≤ Tn ≤
∞
∏

m=1

Tnpm

1/(m+1).

Taking logs and dividing by n we get

∞
∑

m=1

pm log T1/m ≤ log Tn/n ≤
∞
∑

m=1

pm log T1/(m+1).

Evaluating these sums numerically using the values of T1/m from m = 1 to m = 2000 gives
log Tn/n ∈ [2.01533, 2.79327]. We already know that qn ∼ βn where log β = π2/12 log 2. Com-
bining these gives the limiting value of log Tn/ log qn ∈ [1.69846, 2.35407] for almost all ω.

Evaluating log Tp/q/ log q for all p/q with q ≤ 2000 gives the histogram in figure 5.3. As you can
see, there are many values outside the limiting range [1.69846, 2.35407], but that the majority are
within this range, which is what we would expect. The probability pm is only a limiting relative
frequency, therefore it is possible that for any particular n, log Tn/ log qn might be outside these
bounds. The constant term introduced into the size of Tn will vanish in the limit when we take logs
and divide by log qn (which tends to infinity).

1.8 2. 2.2 2.4 2.6

500000

1·106

1.5·106

2·106

2.5·106

3·106

Figure 5.3: Histogram of values of log Tp/q/ log q for q ≤ 2000

Conjecture 5.4.2 Let pn/qn → ω ∈ [0, 1] be the sequence of partial approximants. Let Tn = Tpn/qn
.
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Then for almost all ω, we have

lim inf
n

log Tn

log qn
≥ 1.69

and

lim sup
n

log Tn

log qn
≤ 2.36.

It may even be possible that something considerably stronger than this is true. If we choose ω ∈ [0, 1]
uniformly at random and plot log Tn against log qn we see that all of these graphs are very close to
being straight lines. Figure 5.4 shows these graphs for nine randomly selected ω up to q ≤ 2000.
The shaded area is the region log Tn/ log qn ∈ [1.69846, 2.35407], and the black line is the best fit.
The first conjecture states that eventually all the points will be contained in this shaded area, the
stronger conjecture says that eventually the points will tend toward being a straight line contained
in this area. This stronger conjecture is equivalent to saying that

lim inf
n

log Tn

log qn
= lim sup

n

log Tn

log qn
.

Equivalently, Tn ∼ qα
n for some α ∈ [1.69846, 2.35407].
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Figure 5.4: Nine graphs of log Tn against log qn

Running a linear regression on 10000 randomly chosen ω gives us a correlation coefficient of r2 ≥
0.985 with an average r2 of 0.998. The estimated variance was at most 0.47 and the average estimated
variance was 0.045. These numbers are very good. Unfortunately, these linear regressions could only
be applied to graphs with at most 15 points because of the requirement that q ≤ 2000. This evidence
is considerably less convincing than the previous evidence.

More likely is that almost all the time log Tn/ log qn varies in the interval [1.69846, 2.35407], mostly
tending towards the bottom end when the common low integers appear in the continued fraction
expansion, with occasional large jumps towards the top end when the infrequent large integers
appear.

We could define the exponent distribution interval Eω of ω ∈ [0, 1] to be the interval

Eω = [lim inf
n

log Tn

log qn
, lim sup

n

log Tn

log qn
].

The first conjecture states that for almost all ω, Eω ⊆ [1.69846, 2.35407], the second states that
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for almost all ω, |Eω| = 1. Numerical evidence suggests strongly that for all ω, Eω ⊆ [1.6, 3]. Even
stronger than this last statement, the numerical evidence suggests the following conjecture.

Conjecture 5.4.3 For all p/q, q1.6 ≤ |Tr′p/q | ≤ q3.

5.5 Spiralling almost everywhere

We propose the following conjecture.

Conjecture 5.5.1 The boundaries of the Maskit and Bers slices spiral infinitely almost everywhere.

There are two ways of seeing why this is probably true. The first is more intuitively suggestive,
but less workable. The second is less intuitive but only requires the very plausible conjectures 5.3.1
and 5.4.3 to make it work.

5.5.1 Random walk

Define the function
θ : [0, 1] × N −→ R; (ω, n) 7→ sp.deg℘pn(ω)/qn(ω)

sending (ω, n) to the spiralling degree (definition 4.1.1) of the pleating ray of the nth partial ap-
proximant of ω. Essentially, the proof of theorem 4.0.2 shows that for certain ω, θ(ω, n) → ∞ as
n → ∞. The proof of theorem 4.0.3 shows that for these ω, if θ(ω, n) → ∞ then the boundary is
spiralling infinitely at f(ω). Although we have not proved it, it seems intuitively plausible that for
any ω, if supn θ(ω, n) = +∞ and infn θ(ω, n) = −∞ then the boundary is twisting at f(ω).

Define the random variable Θn on the state space [0, 1] with either Lebesgue measure or Gauss
measure by Θn(ω) = θ(ω, n). If it were the case that ∆Θn := Θn+1 − Θn were independent,
identically distributed random variables (distributed like ∆Θ say), then it would almost immediately
follow that the boundary is twisting almost everywhere. As long as P(∆Θ > ε) > 0 and P(∆Θ <
−ε) > 0 for some ε, then the Θn would be a nontrivial one dimensional random walk and would
therefore get close to ±∞ infinitely often.

Unfortunately, there are two problems. Firstly, the ∆Θn are not independent. Secondly, we would
need to prove that supn θ(ω, n) = +∞ and infn θ(ω, n) = −∞ together imply that the boundary is
twisting at f(ω). The second problem is probably not too difficult, but the first is. Even though the
∆Θn are not independent, it seems on the basis of numerical work that they are sufficiently close
to independent and identically distributed that the conclusion should be true.

If we could show that there was a uniform N such that whenever the nth partial approximant
satisfied an(ω) > N we had |∆Θn(ω)| > ε, then this would be enough. Unfortunately, the trace
derivative formula, equation 4.13, involves terms that depend crucially on pn(ω)/qn(ω), and so
finding such a uniform N cannot be guaranteed. Again, numerically it seems as though quite small
choices of N do in fact suffice (N = 3 or N = 4 seems to work).

The numerical basis for these claims is as follows. The program (Mathematica notebook random-
walk.nb) was instructed to randomly choose 30000 different ω ∈ [0, 1] (with a uniform distribution).
For each ω, the program runs through the continued fraction expansion as far as numerical precision
allows and with the restriction that qn(ω) < 2000. Whenever it encounters an(ω) = N it stores the
value of |∆Θn(ω)|. This process was repeated for various values of N between 1 and 20, and the
minimum and maximum values for |∆Θn(ω)| are summarised in the second and third columns of
the table below. The fifth and sixth columns summarise the same data for the case an(ω) ≥ N .
Note that the maximum values in the sixth column are close to the maximum possible value of
π/2 ≈ 1.57. Also note that the difference between the second and third columns gets quite small as
N increases, which gives some plausibility to the idea that the ∆Θn are approximately identically
distributed for large an(ω).
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N min= ∆Θn(ω) max= ∆Θn(ω) Samples min≥ ∆Θn(ω) max≥ ∆Θn(ω) Samples
1 0 0.229895 30800 0 1.56769 71787
2 7.4455 × 10−10 0.151893 12125 7.4455 × 10−10 1.56769 40987
3 0.0519555 0.335039 6633 0.0519555 1.56769 28862
4 0.259119 0.512935 4081 0.259119 1.56769 22229
5 0.449701 0.662867 2793 0.449701 1.56769 18148
6 0.606954 0.782329 2058 0.606954 1.56769 15355
7 0.731879 0.877532 1609 0.731879 1.56769 13297
8 0.830784 0.953197 1234 0.830784 1.56769 11688
9 0.910019 1.01443 972 0.910019 1.56769 10454
10 0.974477 1.0654 828 0.974477 1.56769 9482
11 1.02777 1.10792 741 1.02777 1.56769 8654
12 1.07248 1.14399 588 1.07248 1.56769 7913
13 1.11046 1.17471 484 1.11046 1.56769 7325
14 1.1431 1.2014 459 1.1431 1.56769 6841
15 1.17145 1.22451 404 1.17145 1.56769 6382
16 1.19631 1.24532 361 1.19631 1.56769 5978
17 1.21828 1.2635 308 1.21828 1.56769 5617
18 1.23778 1.27983 282 1.23778 1.56769 5309
19 1.25527 1.29463 254 1.25527 1.56769 5027
20 1.27101 1.30804 215 1.27101 1.56769 4773

There are various numerical issues which need to be considered here. First of all, it may be that
the number of samples is insufficient to estimate the parameters. We do not rigorously consider this
possibility, but repeating the process with 1000 samples or with 8000 rather than 30000 samples
gives the same numbers to almost two significant figures which suggests that they are reasonably
accurate. The other possibility is that these numbers are an artifact of the small denominators
qn(ω) < 2000 being considered. This problem is particularly acute for large N . Consider that
when we encounter an(ω) = N we get that qn+1(ω) ≥ Nqn(ω). This is partially reflected in the
table by the fact that we have considerably fewer samples for large N than for small N . However,
repeating the experiment with the conditions that 0 < qn(ω) < 200, 200 < qn(ω) < 700 and
700 < qn(ω) < 2000 gives the same values to almost two significant figures. Again, this lends some
support to these numbers being universal.

In summary, this approach seems to lend quite strong numerical support to conjecture 5.5.1. How-
ever, it does not suggest any obvious ways to go about proving it.

5.5.2 Boundary conformality

Let f : D → M be the Riemann map from the unit disc D to the Maskit slice M (or the Bers
slice). If we can show directly that for almost all points ζ ∈ ∂D that f is not conformal (that is,
equation 5.2 doesn’t hold), then by the twist theorem (theorem 5.1.1), the map f must be twisting
at almost all ζ ∈ ∂D. That f is twisting is equivalent to what we earlier called the boundary
spiralling infinitely almost everywhere.

Equation 5.2 implies that if f is conformal at ζ ∈ ∂D, zn ∈ ∆ and zn → ζ then

lim
n→∞

f(zn) − f(ζ)

zn − ζ
(5.5)

must exist and the terms of the sequence must be bounded away from 0 and ∞. We suggest that
for almost all ζ there is a sequence zn for which the terms of the sequence are not bounded away
from 0 and ∞. We give the details of this sequence below, and assuming conjectures 5.3.1 and 5.4.3
prove that it has the required properties.

Given ω ∈ [0, 1], define an and pn/qn to be the sequence of partial quotients and partial approxi-
mants of ω. Now define

αn =

∣

∣

∣

∣

ω − pn

qn

∣

∣

∣

∣

,

zn = pn/qn + iε|ω − pn/qn|
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for some small ε, and

σn =

∣

∣

∣

∣

f(ω) − f(zn)

ω − zn

∣

∣

∣

∣

.

Note that the zn are in a Stolz angle at ω of angle tan−1 ε. also note that |ω − zn| ≈ αn. We show,
assuming conjecture 5.3.1, that for almost all ω there is a subsequence nm with the property that
σnm+m/σnm

≤ 1/2m. Clearly, this contradicts the sequence (σn) being bounded away from 0 and
∞.

Fix N (we specify how exactly later). Write Sm+1
N for the sequence (N N · · · N) (where N is

repeated m + 1 times). From lemma 5.2.3, let S ⊆ [0, 1] be the full measure set of numbers with
continued fraction expansions in which every finite sequence of positive integers occurs infinitely
often. In particular, for ω ∈ S the sequence Sm+1

N occurs in the continued fraction expansion of ω.
Define nm(ω) so that anm+1 = · · · = anm+m+1 = N .

Equation 5.4 shows that if n = nm + k with 0 ≤ k < m then αn+1/αn ≤ (N + 2)/N3.

Let n = nm + k. Consider the trace of Wpn/qn
at f(ω). Writing τ = q−2

n (ω− pn/qn)−1, we get that

TrWpn/qn
= 2 − π2

τ2
+O(τ−3). (5.6)

Applying conjecture 5.3.1, we get that

|f(pn/qn) − f(ω)| = Θ

(

π2

τ2|Tr′n |

)

.

That is,

|f(pn/qn) − f(ω)| = Θ

(

π2q4n|ω − pn/qn|2
|Tr′n |

)

.

Applying the same reasoning at f(zn) instead of f(pn/qn), and comparing we get that

|f(zn) − f(ω)| = Θ

(

π2q4n|ω − pn/qn|2
|Tr′n |

)

.

From this we get that

σn = Θ

(

π2q4nαn

|Tr′n |

)

.

Therefore,
σn+1

σn
= Θ

(

q4n+1

q4n
· αn+1

αn
· |Tr′n |
|Tr′n+1 |

)

.

Now qn+1 ≤ (N+1)qn, αn+1/αn ≤ (N+1)/N3 and by conjecture 5.4.1, |Tr′n |/|Tr′n+1 | = Θ(1/N3).
It follows that σn+1/σn = O(1/N). The constants involved are universal, so we can choose N large
enough to make σn+1/σn ≤ 1/2. With this choice of N , applying the same reasoning for each
nm ≤ n < nm +m we get that σnm+m/σnm

≤ 1/2m.

This completes the argument for conjecture 5.5.1, but there are a few more things worth saying
about this argument. First of all, although we have used a lot of implicit constants and less than
symbols in showing σn+1/σn = O(1/N), in fact if you assumed that the bounds were all reasonably
tight then you would get σn+1/σn ≈ π2/N for large enough N . This would suggest that you need
to take N = 10 for the argument to work (that is, for σn+1/σn ≤ K < 1 so that σn+m/σn → 0
uniformly in m). Sure enough, running calculations on a computer show that N = 9 doesn’t work
and N = 10 does work, and that σn+1/σn ≈ π2/N is reasonably accurate except for the first few
N . For various computations of this sort, see the Mathematica notebook sigma-scale-ratios.nb.

Given any two sequences A = (a1 . . . an) and B = (b1 . . . bk), define the sequence Sm to be A followed
by m copies of B and pm/qm to be the corresponding fractions. Writing σm for the corresponding
ratio, we get that σm+1/σm seems to depend almost entirely on the sequence B and not on A at
all, and is approximately constant. In particular, for some sequences B this ratio is always greater
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than 1, and for some sequences it is always less than 1. The only obvious exception is the sequence
B = (1) where the ratio is sometimes less than and sometimes greater than 1. Since the subsequence
consisting of m copies of B appears in the continued fraction expansion of almost every ω, it appears
likely that the quantity σn(ω) varies wildly between 0 and ∞ for almost all ω (although this isn’t
certain, it could tend to either 0 or ∞ almost everywhere).

It is also worth saying something about the sequence B = (1). It has been conjectured that the
point on the boundary of the Maskit slice corresponding to the golden mean φ = (

√
5−1)/2 (whose

continued fraction is [0 1 1 1 . . .]) is the lowest point. If this conjecture were true (and extensive
computation suggests it is), it would rule out the possibility of the Maskit slice spiralling at that
point (because if the boundary spiralled around it, there would have to be a point lower than
it). In fact, it seems plausible that the boundary is conformal at this point (and every irrational
point whose continued fraction has a tail of 1s only). Indeed, if pn/qn are the partial approximants
to φ then computer calculations suggest that the initial direction of the pleating ray at the 2nth
cusp is exactly vertical (and at the 2n + 1th cusp, approximately vertical). See the Mathematica
notebook golden-mean-sequence.nb. This suggests that the irrational pleating ray at φ might extend
beyond the boundary, which would show that the boundary was conformal at that point. For other
continued fractions with a tail of 1s, it seems as though the initial directions of the pleating rays
at the cusps corresponding to the partial approximants tend towards a fixed angle, or at least vary
within a very narrow band, which suggests that the same may be true of these points too. This
would be consistent with the ratio σn+1/σn varying around 1.

Finally, it is possible to relate the sequence B to the spiralling behaviour at a point. Whenever
the sequence (1 N 1 N . . . 1 N) of length 2m appears in the continued fraction expansion of ω,
then at the scale of the cusps corresponding to the partial approximants in this subsequence, the
boundary spirals around approximately m/4 times. Each appearance of (1 N) introduces a rotation
of angle approximately π/2 in the initial direction of the pleating rays. The sequence (N N . . . N)
doesn’t correspond to any spiralling, because the first N introduces a rotation of π/2, the second
one −π/2 and so forth. In particular, note that if the tail of the continued fraction expansion of ω
consisted entirely of N ’s (or indeed of any large integers), the boundary would not be expected to
spiral infinitely at this point, but it wouldn’t be conformal either.

5.6 Hausdorff dimension

The conjecture concerning the statistical distribution of sizes of |Tr′p/q(µp/q)| suggests an argument
to show that the Hausdorff dimension of the boundary must be less than 1.25.

Let Up/q be the ball of radius cp/q about µp/q, where

cp/q :=
2

|Tr′p/q(µp/q)|
.

Numerical analysis (in Mathematica notebook hausdorff.nb) suggests strongly the following conjec-
ture.

Conjecture 5.6.1 For all N ,

⋃

p/q
q≥N

Up/q ∩M = M−{µp/q : q < N}.

That is, for any N , the class {Up/q : q ≥ N} is a cover of M missing only finitely many points.

The cover is illustrated in figure 5.5. This conjecture is related to conjecture 5.3.1. If Up/q covers the
image of the interval Ip/q = (p/q − 1/q2, p/q + 1/q2), then the identity in conjecture 5.6.1 follows
from the corresponding identity

⋃

p/q
q≥N

Ip/q = [0, 1] − {p/q : q < N}.
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Figure 5.5: Covers of the Maskit slice by open balls Up/q with q ≥ 2, q ≥ 3, q ≥ 4 and q ≥ 8

This identity follows directly from lemma 5.2.4. Conjecture 5.3.1 implies that the image of the
interval Iε

p/q = (p/q− ε/q2, p/q+ ε/q2) has diameter of order ε/|Tr′p/q |. Although it is true that the

union of the intervals Iε
p/q for all p/q with q ≥ N has full measure (by theorem 5.2.6), nonetheless

this set could be compressed by the Riemann map into a set of measure 0 and so conjecture 5.3.1
is not sufficient.

Conjectures 5.4.3 and 5.6.1 together imply the following conjecture.

Conjecture 5.6.2 The Hausdorff dimension of the Maskit slice satisfies dimH(M) < 1.25.

The Hausdorff d-dimensional measure Λd(M) of the boundary is defined by

Λd(M) = lim
ε→0

inf
covers {Uα}

with
diam Uα≤ε

∑

α

(diamUα)d.

In particular, if we define
εN = sup

p/q
q≥N

diamUp/q = sup
p/q

q≥N

cp/q

then εN → 0 as N → ∞ (by conjecture 5.4.3), and so

Λd(M) ≤ lim
N→∞

∑

p/q
q≥N

cdp/q.

Conjecture 5.4.3 tells us that for all p/q we have that cp/q ≤ 2/q1.6. In the definition of the Hausdorff
measure, the constant factor 2 is irrelevant so for ease of notation we will say cp/q ≤ 1/q1.6.

Therefore, if d ≥ 2/1.6 + ε then cdp/q ≤ 1/q2+ε. Therefore, we have that for sufficiently large N ,

Λd(M) ≤
∑

p/q
q≥N

cdp/q ≤
∑

p/q
q≥N

1

q2+ε
≤
∑

q≥N

φ(q)

q2+ε
≤
∑

q≥N

1

q1+ε
< ∞.

Here φ(q) is the Euler totient function giving the number of integers 0 ≤ p < q coprime to q which
clearly satisfies φ(q) ≤ q. On average, φ(q) ≈ 6q/π2 ≈ 0.6q so we can’t improve on this. It follows
that dimH(M) ≤ 2/1.6 = 1.25.
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Conjecture 5.4.2 suggests that on average, cp/q ≤ 1/q1.69846 which suggests the bound dimH(M) ≤
1.17754 is likely to be correct.

In fact, both these bounds seem likely to be large overestimates. Write µq,n for the cusp correspond-
ing to the nth fraction in the qth Farey series. That is, the µq,n are the ordered µr/s for s ≤ q.

Define Sd
q =

∑

n |µq,n − µq,n+1|d. Here we are guessing that |µq,n − µq,n+1| is a good estimate for
the diameter of the segment of M between µq,n and µq,n+1 (which seems likely after inspecting the
Maskit slice at various scales), and that limq→∞ Sd

q is a good estimate of Λd(M). Figure 5.6 shows

a graph of Sd
q against q for various values of d. At d = 1, it seems clear that Sd

q → ∞ as q → ∞.

At d = 1.6 it seems clear that Sd
q → 0. The turning point between these two behaviours seems to

be around d = 1.0582 to d = 1.0584. This suggests dimH(M) ≈ 1.058.
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Figure 5.6: Graphs of estimated Hausdorff measure for various values of d
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Chapter 6

Algorithms and programs

The purpose of this chapter is to describe in some detail the algorithms used to give evidence for the
conjectures described earlier. Hopefully this might prove useful to others wanting to use numerical
computation to suggest conjectures in this area.

6.1 Mathematica

6.1.1 Mathematica and C++

Throughout this chapter, the algorithms will be illustrated with Mathematica code because this is
typically better known to mathematicians than C++ code and is usually clearer and conceptually
easier to understand. However, Mathematica code is also quite slow for the sorts of calculations
involved here, and so C++ was actually used for the long computations. The Mathematica notebook
algorithms-chapter.nb includes all of the code in this chapter and some more.

6.1.2 A brief introduction to Mathematica

Function definitions

In Mathematica, lines of code are separated by semicolons. The symbol := means that the left hand
side is defined to be replaced by the right hand side. The square bracket symbols [ and ] are used
for function definitions, and the symbol is used in a function definition after a variable name. So
for example f[x ]:=xˆ2; is the Mathematica definition of f(x) = x2.

You can give recursive function definitions in Mathematica. The following is a recursive definition
of the factorial function.

Fac[0]:=1;

Fac[n ]:=n Fac[n-1];

Conditional functions and definitions

The Mathematica function If[cond,a,b] returns a if cond is true or b otherwise. Alternatively, con-
ditionals can be expressed in the function definition by putting /;cond after the definition. For
example, we could tighten up the definition of the factorial function as follows.

Fac[0]:=1

Fac[n ]:=n Fac[n-1]/;n>0

Fac[n ]:=Infinity/;n<0
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Modules

It also possible to write more traditional programs in Mathematica using the Module[{locals},program]
function. This evaluates the multi-line program program where locals is a comma separated list of
local variables used only in that module. Values are returned from the module either by including
the command Return[value] or by writing the return value as the last line of program without a
semicolon at the end. For example, the factorial algorithm could be written more traditionally as
follows.

Fac[n ]:=Module[{},
If[n==0,Return[1]];

If[n<0,Return[Infinity]];

n Fac[n-1]

];

Loops

The function For[init,cond,step,program] is a standard programming for-loop. It first evaluates init,
and then repeatedly evaluates program followed by step until cond is true. For example, we could
rewrite the factorial program as follows.

Fac[n ]:=Module[{result,i},
result=1;

For[i=2,i<=n,i++,

result=result*i;

];

result];

The statement i++ is a shorthand for i=i+1 which evaluates i+1 and sets i to this new value (i.e.
it just increases the value of i by 1).

Lists

A list in Mathematica is an ordered sequence of objects, which could be numbers, symbolic expres-
sions or lists for example. Lists are written like sets with curly braces and commas, for example
{a,b,c}. You can extract a particular element of a list using double square brackets. For example, if
squares={1,4,9,16}, then squares[[3]] will evaluate to 9. There are a huge number of functions which
operate on lists in Mathematica. Two of the more useful ones used below are Join[list1,list2] and
Append[list,element]. The length of a list is given by Length[list].

6.2 Computing the Boundary

6.2.1 Recursive formula for trace

The basic element in these calculations is the algorithm for computing the trace of the p/q-word.
This recursive formula is due to David Wright, see [Wright88] and [MSW02]. We start from the
formula for two matrices M,N ∈ SL2C,

TrMN + TrM−1N = TrM · TrN.

If p/q < r/s, so that W(p+r)/(q+s) = Wp/qWr/s (see section 2.3.2), then

TrW(p+r)/(q+s) = TrWp/q · TrWr/s − TrW−1
p/qWr/s.

It is relatively easy to show that TrW(r−p)/(s−q) = TrW−1
p/qWr/s, and so

TrW(p+r)/(q+s) = TrWp/q · TrWr/s − TrW(r−p)/(s−q). (6.1)
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Consider the following table (ignore the fourth column for the moment).

p/q r/s (r − p)/(s− q) move
0/1 1/1 1/0
0/1 1/2 1/1 L
0/1 1/3 1/2 L
1/4 1/3 0/1 R
1/4 2/7 1/3 L
3/11 2/7 1/4 R
5/18 2/7 3/11 R

This table gives us a way to compute TrW5/18. For the Maskit slice, we know that TrW0/1 = −iµ,
TrW1/1 = −iµ + 2i and TrW1/0 = 2. So we know the traces of the p/q-words for the first row of
the table. Equation 6.1 tells us that we can compute TrW1/2 from this, and so we know the traces
of the second row. Each row involves only one new fraction, so we can always use equation 6.1 to
compute the next row given the previous row.

The fourth column of the table specifies whether you had to “move left” or “move right” to get to
this row from the previous one. A move left means going from (p/q, r/s, (r−p)/(s−q)) to (p/q, (p+
r)/(q+s), r/s). A move right means going from (p/q, r/s, (r−p)/(s−q)) to ((p+r)/(q+s), r/s, p/q).
If (x, y, z) are the corresponding traces, then a move left corresponds to (x, xy − z, y) and a right
move to (xy − z, y, x). In either case, you divide the interval [p/q, r/s] at the point (p+ r)/(q + s)
and look at either the left or right half of this interval. We encode this in the following pair of maps
Q̂3 × C3 → Q̂3 × C3:

L : (p/q, r/s, ·, x, y, z) 7−→ (p/q, (p+ r)/(q + s) , r/s, x, xy − z, y)

R : (p/q, r/s, ·, x, y, z) 7−→ ((p+ r)/(q + s), r/s, p/q, xy − z, y, x)

For a suitable sequence of L,R moves, you can get to any fraction p/q ∈ [0, 1] starting from
(0/1, 1/1, 1/0). See sections 2.3.1 and 2.3.2. This can be expressed algorithmically very simply.
Suppose your target fraction is u/v and you have reached (p/q, r/s, ·). You simply check if (p +
r)/(q + s) is greater than, less than or equal to u/v, and do a corresponding left move, right move
or stop. The following Mathematica code implements this algorithm.

f1 ⊕f2 :=(Numerator[f1]+Numerator[f2])/(Denominator[f1]+Denominator[f2]);

TrF[uv ,uv ,rs ,x ,y ,z ]:=x;

TrF[uv ,pq ,uv ,x ,y ,z ]:=y;

TrF[uv ,pq ,rs ,x ,y ,z ]:=TrF[uv,pq,pq⊕rs,x,x y-z,y]/;pq⊕rs>uv
TrF[uv ,pq ,rs ,x ,y ,z ]:=TrF[uv,pq⊕rs,rs,x y-z,y,x]/;pq⊕rs<=uv
TrF[uv ,mu ]:=TrF[uv,0/1,1/1,-I mu,-I mu+2 I,2];

The first line of this program defines the Farey addition operator ⊕ by p/q⊕ r/s = (p+ r)/(q+ s).
The next four lines define the function TrF to be the value of TrWu/v assuming TrWp/q = x,
TrWr/s = y and TrW(r−p)/(s−q) = z. The first two of these are the cases when p/q = u/v or
r/s = u/v in which case x or y is returned. The third and fourth of these lines are the interesting
cases. If p/q ⊕ r/s > u/v then we have a left move which is defined in the third of these lines,
otherwise we have a right move defined in the fourth. The final line of the program just defines a
shorthand TrF[uv,mu] for TrWu/v(µ) in the Maskit slice.

The trace of the p/q-word in the Maskit slice is a polynomial of degree q in µ with integer coefficients.
This suggests that the simplest way of computing the trace would be to compute this polynomial
once and then use this to evaluate it for particular µ. This has two problems. First of all, it requires
O(q) memory storage, and it also requires O(q) operations to evaluate. On the other hand, the
recursive method above requires O(1) storage, and O(log q) operations to evaluate. In practice,
this makes a very significant difference. Mathematica, which by default works with the polynomial
representation, struggles to do the computations below for q = 20, whereas the C++ program can
easily handle q = 20000. The second problem is that if you evaluate the polynomial using finite
precision arithmetic, you get numerical instability. Experimentally, this seems to be a problem for
q = 23 and onwards on an ordinary PC. This is not a problem for the recursive method. Note that it
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is possible to force Mathematica to use the recursive method, which makes it possible to do almost
as much with Mathematica as with C++, but it still an interpreted language and is much slower
than C++. See the Mathematica notebook algorithms-chapter.nb to see how to do this.

For reference, the more traditional way of writing this program, which would be more useful for
writing a C++ implementation for example, is as follows.

FareyAdd[f1 ,f2 ]:=(Numerator[f1]+Numerator[f2])/(Denominator[f1]+Denominator[f2]);

TrF[uv ,pq ,rs ,x ,y ,z ]:=Module[{pqrs},
If[uv==pq,Return[x]];

If[uv==rs,Return[y]];

pqrs=FareyAdd[pq,rs];

If[pqrs>uv,

TrF[uv,pq,pqrs,x,x y-z,y],

TrF[uv,pqrs,rs,x y-z,y,x]]

];

As a final note on the implementation (for programmers). This recursive definition of the trace
functions requires O(log q) function calls and therefore O(log q) storage space on the stack. Although
this is not much of a problem, it is a fairly easy exercise to rewrite this function without using
recursion. This is how David Wright’s pseudo-code algorithm on page 286 of [MSW02] works. The
author’s C++ function maskit::trace poly in maskitalgorithms.cpp is straight out of [MSW02] and
also uses this non-recursive algorithm.

6.2.2 Finding cusps I

The basic idea behind drawing the boundary of the Maskit slice is to use the fact that cusps are
dense in the boundary and are enumerated in the correct order by fractions p/q. We plot the
boundary by plotting every p/q-cusp for q ≤ qmax. At the p/q-cusp, the trace of the p/q-word is
±2, as Wp/q is parabolic. For the Maskit slice, this trace is always +2. We already have an efficient
algorithm for computing TrWp/q(µ) from the previous section, so we need only find the correct root
µp/q of TrWp/q(µ) = 2. David Wright’s solution was to start with µ0/1 = 2i which we know, and
use this root as the initial guess in applying Newton’s method to find the next cusp. This new cusp
is then used as the initial guess to find the next cusp, and so forth. The hope is that the continuity
of the boundary will mean that this initial guess forces Newton’s method to converge to the correct
root of the trace polynomial for the next cusp. In practice, for the Maskit slice and the Earle slice,
this is true. For other slices, this may not work and we discuss an alternative algorithm below in
these cases.

We start by giving an algorithm using built in functions of Mathematica to illustrate the process.
The numerical stability issues mentioned in the previous section mean this method can only be
used to compute the boundary cusps p/q with q ≤ 23. The program below only runs for q ≤ 15 (so
that it runs quickly).

qmax=15;

FareyList=Union[Flatten[Table[p/q,{q,1,qmax},{p,0,q}]]];
initmu=2.I;

boundary={};
For[i=1,i<=Length[FareyList],i++,

tracefunction=TrF[FareyList[[i]],mu];

initmu=mu/.FindRoot[tracefunction==2,{mu,initmu}];
boundary=Append[boundary,initmu];

];

This program requires some explanation. The FareyList=... line is just a little Mathematica trick to
make the variable FareyList an ordered list of the fractions p/q with q ≤ qmax. The initmu=2.I;
line just says that the first guess we use will be µ = 2i (which is in fact the correct solu-
tion for the 0/1-cusp). The boundary={} line just sets boundary to be an empty list. By the
end, it will be a list of complex numbers corresponding to the p/q-cusps for the values of p/q
in FareyList. The For line just evaluates the next three lines for each of the values of i from 1
to Length[FareyList]. The next line sets tracefunction to be the symbolic expression returned by
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TrF[FareyList[[i]],mu], which is the trace of the p/q-word in mu where p/q = FareyList[[i]], the ith
element of the list of fractions. The function TrF is the one defined in the previous section. The
expression mu/.FindRoot[tracefunction==2,{mu,initmu}] in Mathematica just returns the result of
applying Newton’s algorithm to the function tracefunction-2 starting with an initial guess initmu.
In fact, it uses a more sophisticated algorithm than Newton’s algorithm, but the effect is the same
(see the Mathematica documentation for more details). This value will be the new initial guess for
the next cusp. Finally, the list boundary has this new cusp appended to it.

To write a C++ implementation (or any other language which doesn’t have Mathematica’s built in
functions), we need to write programs for Newton’s method, for finding the derivative of the function,
and also for listing the fractions p/q with q ≤ qmax in order. Wright has written an excellent
guide to writing these functions in [MSW02] pages 286–309. Alternatively, you could study the
C++ implementation used here. Newton’s method is implemented in the file newton.hpp, function
tsolve analytic. The function giving the next fraction in the Farey sequence is given in file farey.cpp
function next in sequence. The function which puts this all together is in file maskitalgorithms.cpp
function view::compute boundary.

We focus here on one aspect of Wright’s algorithm, the computation of the derivative of the trace
function. Newton’s algorithm for finding roots f(z) = 0 proceeds by starting with an initial guess
z0 and repeatedly applying the rule

z 7→ z − f(z)

f ′(z)

to get a sequence zn → z∞ such that f(z∞) = 0. To use this method in our case, we need to be
able to compute Tr′p/q. Wright’s solution is to use a numerical approximation of the derivative. We
could just choose a small value ε and compute

f(z + ε) − f(z)

ε
,

but in fact Wright uses the more accurate approximation (for analytic functions)

f(z + ε) − f(z − ε)

4ε
+
f(z + iε) − f(z − iε)

4iε
.

This approximation is accurate to order ε4. This is the algorithm used in the C++ implementation
used throughout. However, there is an alternative, marginally quicker and even more accurate way
of computing the trace derivative.

Recall the L and R moves of the previous section. Under an L move, the fractions (p/q, r/s, (r −
p)/(s− q)) are replaced by (p/q, (p+ r)/(s+ q), r/s) and the triple of corresponding traces (x, y, z)
is replaced by (x, xy − z, y). Suppose we had already computed the derivatives (with respect to µ)
of these traces to be (ẋ, ẏ, ż). The derivative of the trace function corresponding to (p+ r)/(q + s)
will then be ẋy+ xẏ− ż. So the triple of trace derivatives can be replaced by (ẋ, ẋy+ xẏ− ż, ẏ). A
similar procedure works for an R move. The following Mathematica code uses this to evaluate the
pair (Tru/v(µ),Tr′u/v(µ)).

FullTrF[uv ,uv ,rs ,x ,y ,z ,dx ,dy ,dz ]:=x;

FullTrF[uv ,pq ,uv ,x ,y ,z ,dx ,dy ,dz ]:=y;

FullTrF[uv ,pq ,rs ,x ,y ,z ,dx ,dy ,dz ]:=

FullTrF[uv,pq,pq⊕rs,x,x y-z,y,dx,x dy+dx y-dz,dy]/;pq⊕rs>uv
FullTrF[uv ,pq ,rs ,x ,y ,z ,dx ,dy ,dz ]:=

FullTrF[uv,pq⊕rs,rs,x y-z,y,x,x dy+dx y-dz,dy,dx]/;pq⊕rs<=uv
FullTrF[uv ,mu ]:=FullTrF[uv,0/1,1/1,-I mu,-I mu+2 I,2,-I,-I,0];

6.2.3 Pleating rays

It is fairly easy to compute the pleating rays using the algorithms above. The p/q-pleating ray ℘p/q

in the Maskit slice is the unique branch of Trp/q(µ) ∈ [2,∞) which touches the cusp µp/q. So, the
algorithm for computing it is simple: start with ℘p/q(t) = µp/q corresponding to t = 2, and slowly
increase t using Newton’s method to find the corresponding root of Trp/q(µ) = t at each stage.

Both the Mathematica and C++ routines do this. The only subtlety is in the choice of which finite
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subset T ⊆ [2,∞) of trace values t to use. This is not a mathematical issue though, purely one of
presentation. You want to compute the least number of points which make it look right. The C++
routines use an automatically adapting technique so that the points in the µ plane are approximately
evenly spaced. The Mathematica routines use a simpler technique to make it conceptually simpler.
See the files for more information.

6.2.4 Finding cusps II

The Maskit slice has some very nice features which make it amenable to computation. It is possible
that the algorithm used to draw the boundary wouldn’t work for other slices because using a close
cusp as the initial guess for Newton’s method would find the wrong solution of the trace polynomial.
There is an alternative algorithm using pleating rays.

For the Maskit slice, Linda Keen and Caroline Series proved in [KeenSeries93] that the p/q-pleating
ray ℘p/q is asymptotic to the line Re(µ) = 2p/q as Im(µ) → +∞. We start by choosing a point
2p/q + iy for some large value of y. This will be close to ℘p/q. Using this as an initial guess, we
find a point µ on the pleating ray. We then compute the value t = Trp/q µ. We now work our way
down the pleating ray until we get to t = 2 which will correspond to the cusp µp/q using Newton’s
method at each stage.

This suggests a general algorithm for other slices. The details will vary, but the general scheme is
as follows.

1. Enumerate the cusps combinatorially. For the Maskit, Earle and Bers slices, this can be done
using fractions p/q.

2. Find a recursive formula for the trace functions associated to cusps.

3. Find the asymptotic behaviour of the pleating rays (or possibly pleating planes for higher
dimensional cases).

4. For each cusp, choose an asymptotic point on the pleating ray and work down towards the
cusp using Newton’s method.

This general algorithm has already been used to plot the pleating rays in the Earle and Bers slices.
For the Earle slice, it is proved in [KomSer01] that ℘p/q intersects the real axis at the point bp/q

which is the unique critical point of Trp/q(d) on R+. Note that from the definitions in section 3.2.3
it is clear that Trp/q(d) ∈ R when d ∈ R. So to find ℘p/q you start by finding the unique critical
point bp/q on R+ (which is simple and quick, even the most basic subdivision algorithm is pretty
efficient for doing this).

For the Bers slice, it is proved in [KomSug04] that if Hp/q is the locus of points φ ∈ B such

that Tr2p/q(φ) ∈ (4,∞) then ℘p/q is the unique connected component of Hp/q − {0} on which

Tr2p/q(φ) < Tr2p/q(0). Komori and Sugawa use this fact to plot the pleating rays by starting at 0 and
moving down the pleating ray.

For the Maskit slice, the following Mathematica code illustrates the algorithm described above.

FindCuspPleating[f ]:=Module[{t,dt,t0,m0},
t[mu ]:=TrF[f,mu];

dt[mu ]:=DTrF[f,mu];

m0=2.f+10.I;

t0=Re[t[m0]];

While[Abs[t[m0]-2.]>0.0001,

m0=m0-(t[m0]-t0)/dt[m0];

t0=2+.75(t0-2);

];

m0

];

The initial guess is the point µ0 = 2p/q + 10i. Experimentally, this choice seems to work for the
Maskit slice, whereas the choice 2p/q+ 3i sometimes leads to the algorithm finding the wrong root
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(see figure 3.1 for an idea as to why this might happen). Rather than tracing the pleating ray
directly, this algorithms first guesses that t0 = Re(Trp/q(µ0)) is the trace of a point on ℘p/q near to
µ0. The algorithm then applies one step of Newton’s method, and replaces t0 by 2 + (3/4)(t0 − 2).
Another step of Newton’s method is then applied, and so on until the trace of µ0 is within 0.0001 of
2. Essentially this is Newton’s method applied to a moving target. This suffices for this algorithm
because we are not interested in finding the pleating ray per se, only in finding the endpoint.
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Appendix A

Notation

We have used the following notation. The bullet point lists give variations on a general notation.

H

H2
The hyperbolic upper half plane.

H3 The hyperbolic upper half space.

G Usually a discrete subgroup of PSL2C.

Γ The group π1(Σ) or equivalently the free group on two generators 〈X,Y 〉.
Ω± The domains of discontinuity of a once-punctured torus group.

Λ The limit set of G.

ρ A representation Γ → PSL2C.

M Usually the 3-manifold H3 ∪ Ω+ ∪ Ω−/G.

ν± The Teichmüller parameters of Ω±/G.

Σ A fixed once-punctured torus.

W A word in the group Γ = 〈X,Y 〉 or 〈A,B〉.

• Wp/q the p/q-word in Γ

µ Coordinate for the Maskit slice.

• µW the cusp corresponding to the word W

• µp/q the p/q-cusp

• µn, µ∞ a sequence of cusps µn, all neighbours of µ∞, tending to µ∞

• µ̃n an approximate cusp sequence

Tr Trace of a matrix.

• TrW function from a representation space or slice, with value Tr(ρ(W )) where ρ is an
element of the representation space or slice

• Trp/q trace function for the p/q-word

• Trn, Tr∞ sequence of trace functions associated to a sequence of cusps µn → µ∞

• Tr′ derivative of the trace function. For example, for the Maskit slice it is the derivative
with respect to the coordinate µ
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℘ Pleating ray.

• ℘W the pleating ray associated to the word W

• ℘p/q the pleating ray ending at the p/q-cusp

• ℘(t) the function from [2,∞) to a slice or representation space parameterising the pleat-
ing ray so that Tr℘(t) = t

O,
Ω,
Θ

Complexity notation. A function f(x) is

• O(g(x)) if limx→∞ |f(x)/g(x)| <∞.

• Ω(g(x)) if limx→∞ |f(x)/g(x)| > 0.

• Θ(g(x)) if 0 < limx→∞ |f(x)/g(x)| <∞.

Q̂ The set Q ∪ {∞}. The element ∞ is written 1/0.

R̂ The set R ∪ {∞}.
⊕ Farey addition, see section 2.3.1.
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